Interesting home experiments. Chemical experiments for children at home. Sets for schoolchildren: Vulcan, Chemistry, Traffic light. Experiments with water for children

My personal experience in teaching chemistry has shown that a science like chemistry is very difficult to study without any prior knowledge and practice. Schoolchildren very often neglect this subject. I personally observed how an 8th grade student, when he heard the word “chemistry,” began to wince, as if he had eaten a lemon.

Later it turned out that due to dislike and misunderstanding of the subject, he skipped school secretly from his parents. Of course, the school curriculum is designed in such a way that the teacher must teach a lot of theory in the first chemistry lessons. Practice seems to fade into the background precisely at the moment when the student cannot yet independently realize whether he needs this subject in the future. This is primarily due to the laboratory equipment of schools. In big cities, things are currently better with reagents and instruments. As for the province, just like 10 years ago and now, many schools do not have the opportunity to conduct laboratory classes. But the process of studying and becoming interested in chemistry, as well as other natural sciences, usually begins with experiments. And this is no coincidence. Many famous chemists, such as Lomonosov, Mendeleev, Paracelsus, Robert Boyle, Pierre Curie and Marie Sklodowska-Curie (schoolchildren also study all of these researchers in physics lessons) began experimenting from childhood. The great discoveries of these great people were made precisely in home chemical laboratories, since studying chemistry in institutes was available only to people of means.

And, of course, the most important thing is to interest the child and convey to him that chemistry surrounds us everywhere, so the process of studying it can be very exciting. This is where home chemical experiments come to the rescue. By observing such experiments, one can further look for an explanation of why things happen this way and not otherwise. And when on school lessons the young researcher will encounter similar concepts, the teacher’s explanations will be more understandable to him, since he will already have his own experience of conducting home chemical experiments and the knowledge gained.

It is very important to start learning science with common observations and real-life examples that you think will be most successful for your child. Here are some of them. Water is a chemical substance consisting of two elements, as well as gases dissolved in it. Man also contains water. It is known that where there is no water, there is no life. A person can live without food for about a month, but without water - only a few days.

River sand is nothing more than silicon oxide, and is also the main raw material for glass production.

A person himself does not suspect it and carries out chemical reactions every second. The air we breathe is a mixture of gases - chemicals. During exhalation, another complex substance is released - carbon dioxide. We can say that we ourselves are a chemical laboratory. You can explain to your child that washing hands with soap is also a chemical process of water and soap.

An older child who, for example, has already started studying chemistry at school, can be explained that almost all elements can be found in the human body periodic table D. I. Mendeleev. Not only are all chemical elements present in a living organism, but each of them performs some biological function.

Chemistry also includes medicines, without which many people nowadays cannot live a day.

Plants also contain the chemical chlorophyll, which gives leaves their green color.

Cooking is a complex chemical process. Here is an example of how dough rises when yeast is added.

One of the options for getting a child interested in chemistry is to take an individual outstanding researcher and read the story of his life or watch an educational film about him (films about D.I. Mendeleev, Paracelsus, M.V. Lomonosov, Butlerov are now available).

Many people believe that real chemistry is harmful substances, and experimenting with them is dangerous, especially at home. There are many very exciting experiences that you can do with your child without harming your health. And these home chemical experiments will be no less exciting and instructive than those that come with explosions, acrid odors and clouds of smoke.

Some parents are also afraid to conduct chemical experiments at home because of their complexity or lack of necessary equipment and reagents. It turns out that you can get by with improvised means and those substances that every housewife has in her kitchen. You can buy them at your local hardware store or pharmacy. Test tubes for conducting home chemical experiments can be replaced with bottles of tablets. To store reagents, you can use glass jars, for example, baby food or mayonnaise.

It is worth remembering that the container with reagents must have a label with the inscription and be tightly closed. Sometimes the test tubes need to be heated. In order not to hold it in your hands when it heats up and not get burned, you can build such a device using a clothespin or a piece of wire.

It is also necessary to allocate several steel and wooden spoons for mixing.

You can make a stand for holding test tubes yourself by drilling through holes in the block.

To filter the resulting substances you will need a paper filter. It is very easy to make according to the diagram given here.

For children who do not yet go to school or are in elementary school, performing chemical experiments at home with their parents will be a kind of game. Most likely, such a young researcher will not yet be able to explain some individual laws and reactions. However, perhaps it is precisely this empirical method of discovering the surrounding world, nature, man, and plants through experiments that will lay the foundation for the study of natural sciences in the future. You can even organize some kind of competitions in the family to see who has the most successful experience and then demonstrate them at family holidays.

Regardless of your child's age or ability to read and write, I recommend keeping a laboratory journal in which you can record experiments or sketch. A real chemist always writes down a work plan, a list of reagents, sketches the instruments and describes the progress of the work.

When you and your child first begin to study this science of substances and conduct home chemical experiments, the first thing you need to remember is safety.

To do this, you must follow the following safety rules:

2. It is better to allocate a separate table for conducting chemical experiments at home. If you do not have a separate table at home, then it is better to conduct experiments on a steel or iron tray or pallet.

3. You need to get thin and thick gloves (they are sold at a pharmacy or hardware store).

4. For chemical experiments, it is best to buy a lab coat, but you can also use a thick apron instead of a coat.

5. Laboratory glassware should not be further used for food.

6. In home chemical experiments there should be no cruelty to animals or disruption of the ecological system. Acidic chemical wastes must be neutralized with soda, and alkaline ones with acetic acid.

7. If you want to check the smell of a gas, liquid or reagent, never bring the container directly to your face, but, holding it at some distance, direct the air above the container towards you by waving your hand and at the same time smell the air.

8. Always use small quantities of reagents in home experiments. Avoid leaving reagents in a container without an appropriate inscription (label) on the bottle, from which it should be clear what is in the bottle.

You should start learning chemistry with simple chemical experiments at home, allowing your child to master the basic concepts. A series of experiments 1-3 allow you to get acquainted with the basic aggregative states of substances and the properties of water. To begin with, you can show your preschooler how sugar and salt dissolve in water, accompanying this with an explanation that water is a universal solvent and is a liquid. Sugar or salt are solids that dissolve in liquid.

Experience No. 1 “Because - without water and neither here nor there”

Water is a liquid chemical substance consisting of two elements as well as gases dissolved in it. Man also contains water. It is known that where there is no water, there is no life. A person can live without food for about a month, and without water - only a few days.

Reagents and equipment: 2 test tubes, soda, citric acid, water

Experiment: Take two test tubes. Pour baking soda and citric acid into them in equal quantities. Then pour water into one of the test tubes, but not into the other. In a test tube in which water was poured, carbon dioxide began to be released. In a test tube without water - nothing has changed

Discussion: This experiment explains the fact that without water many reactions and processes in living organisms are impossible, and water also accelerates many chemical reactions. It can be explained to schoolchildren that an exchange reaction occurred, as a result of which carbon dioxide was released.

Experiment No. 2 “What is dissolved in tap water”

Reagents and equipment: transparent glass, tap water

Experiment: Pour tap water into a transparent glass and leave it in a warm place for an hour. After an hour, you will see settled bubbles on the walls of the glass.

Discussion: Bubbles are nothing more than gases dissolved in water. Gases dissolve better in cold water. As soon as the water becomes warm, the gases stop dissolving and settle on the walls. Such a home chemical experiment also allows you to introduce your child to the gaseous state of matter.

Experiment No. 3 “What is dissolved in mineral water or water is a universal solvent”

Reagents and equipment: test tube, mineral water, candle, magnifying glass

Experiment: Pour mineral water into a test tube and slowly evaporate it over a candle flame (the experiment can be done on the stove in a saucepan, but the crystals will be less visible). As the water evaporates, small crystals will remain on the walls of the test tube, all of them of different shapes.

Discussion: Crystals are salts dissolved in mineral water. They have different shapes and sizes, since each crystal has its own chemical formula. With a child who has already started studying chemistry at school, you can read the label on mineral water, where its composition is indicated, and write the formulas of the compounds contained in the mineral water.

Experiment No. 4 “Filtering water mixed with sand”

Reagents and equipment: 2 test tubes, funnel, paper filter, water, river sand

Experiment: Pour water into a test tube and add a little river sand there, mix. Then, according to the scheme described above, make a filter out of paper. Insert a dry, clean test tube into the rack. Slowly pour the sand and water mixture through a funnel with a paper filter. The river sand will remain on the filter, and you will get clean water in the test tube.

Discussion: Chemical experiment allows us to show that there are substances that do not dissolve in water, for example, river sand. The experience also introduces one of the methods for purifying mixtures of substances from impurities. Here you can introduce the concepts of pure substances and mixtures, which are given in the 8th grade chemistry textbook. In this case, the mixture is sand and water, pure substance- filtrate, river sand is sediment.

The filtration process (described in grade 8) is used here to separate a mixture of water and sand. To diversify your study this process, you can delve a little deeper into the history of drinking water purification.

Filtration processes were used as early as the 8th and 7th centuries BC. in the state of Urartu (now the territory of Armenia) to purify drinking water. Its residents carried out the construction plumbing system using filters. Thick fabric and charcoal were used as filters. Similar systems of intertwined drainpipes, clay channels equipped with filters were also on the territory of the ancient Nile among the ancient Egyptians, Greeks and Romans. The water was passed through such a filter several times, eventually many times, ultimately achieving the best quality water.

One of the most interesting experiments is growing crystals. The experiment is very visual and gives an idea of ​​many chemical and physical concepts.

Experiment No. 5 “Growing sugar crystals”

Reagents and equipment: two glasses of water; sugar - five glasses; wooden skewers; thin paper; pot; transparent cups; food coloring (the proportions of sugar and water can be reduced).

Experiment: The experiment should begin with the preparation of sugar syrup. Take a saucepan, pour 2 cups of water and 2.5 cups of sugar into it. Place over medium heat and, stirring, dissolve all the sugar. Pour the remaining 2.5 cups of sugar into the resulting syrup and cook until completely dissolved.

Now let's prepare the crystal seeds - rods. Sprinkle a small amount of sugar on a piece of paper, then dip the stick in the resulting syrup and roll it in sugar.

We take the pieces of paper and poke a hole in the middle with a skewer so that the paper fits tightly to the skewer.

Then pour the hot syrup into transparent glasses (it is important that the glasses are transparent - this way the process of crystal ripening will be more exciting and visual). The syrup must be hot, otherwise the crystals will not grow.

You can make colored sugar crystals. To do this, add a little food coloring to the resulting hot syrup and stir it.

The crystals will grow in different ways, some quickly and some may take longer. At the end of the experiment, the child can eat the resulting candies if he is not allergic to sweets.

If you do not have wooden skewers, then the experiment can be carried out with ordinary threads.

Discussion: A crystal is a solid state of matter. It has a certain shape and a certain number of faces due to the arrangement of its atoms. Substances whose atoms are arranged regularly so that they form a regular three-dimensional lattice, called crystalline, are considered crystalline. Row crystals chemical elements and their compounds have remarkable mechanical, electrical, magnetic and optical properties. For example, diamond is a natural crystal and the hardest and rarest mineral. Due to its exceptional hardness, diamond plays a huge role in technology. Diamond saws are used to cut stones. There are three ways to form crystals: crystallization from a melt, from a solution and from the gas phase. An example of crystallization from a melt is the formation of ice from water (after all, water is molten ice). An example of crystallization from solution in nature is the precipitation of hundreds of millions of tons of salt from sea water. In this case, when growing crystals at home, we are dealing with the most common method of artificial growth - crystallization from solution. Sugar crystals grow from a saturated solution with the slow evaporation of the solvent - water or with a slow decrease in temperature.

The following experiment allows you to obtain at home one of the most useful crystalline products for humans - crystalline iodine. Before conducting the experiment, I advise you to watch the short film “The Life of Wonderful Ideas” with your child. Smart iodine." The film gives an idea of ​​the benefits of iodine and the unusual story of its discovery, which the young researcher will remember for a long time. And it is interesting because the discoverer of iodine was an ordinary cat.

During the Napoleonic Wars, the French scientist Bernard Courtois noticed that the products obtained from the ash of seaweed that washed up on the shores of France contained some substance that corroded iron and copper vessels. But neither Courtois himself nor his assistants knew how to isolate this substance from algae ash. An accident helped speed up the discovery.

At his small saltpeter production plant in Dijon, Courtois planned to conduct several experiments. There were vessels on the table, one of which contained a tincture of seaweed in alcohol, and the other a mixture of sulfuric acid and iron. His favorite cat was sitting on the scientist’s shoulders.

There was a knock on the door, and the frightened cat jumped and ran away, brushing away the flasks on the table with her tail. The vessels broke, the contents were mixed, and a violent chemical reaction suddenly began. When a small cloud of vapors and gases settled, the surprised scientist saw some kind of crystalline coating on objects and debris. Courtois began to investigate it. The crystals of this previously unknown substance were called “iodine”.

Thus, a new element was discovered, and Bernard Courtois’s domestic cat went down in history.

Experiment No. 6 “Obtaining iodine crystals”

Reagents and equipment: tincture of pharmaceutical iodine, water, glass or cylinder, napkin.

Experiment: Mix water with iodine tincture in the proportion: 10 ml iodine and 10 ml water. And put everything in the refrigerator for 3 hours. During the cooling process, iodine will precipitate at the bottom of the glass. Drain the liquid, remove the iodine precipitate and place it on a napkin. Squeeze with napkins until the iodine begins to crumble.

Discussion: This chemical experiment is called extraction or extraction of one component from another. In this case, water extracts iodine from the alcohol solution. Thus, the young researcher will repeat the experiment of Courtois the cat without smoke and breaking of dishes.

Your child will already learn about the benefits of iodine for disinfecting wounds from the film. Thus, you will show that there is an inextricable connection between chemistry and medicine. However, it turns out that iodine can be used as an indicator or analyzer of the content of other useful substance– starch. The following experiment will introduce the young experimenter to a separate, very useful chemistry - analytical.

Experiment No. 7 “Iodine-indicator of starch content”

Reagents and equipment: fresh potatoes, pieces of banana, apple, bread, a glass of diluted starch, a glass of diluted iodine, a pipette.

Experiment: We cut the potatoes into two parts and drip diluted iodine on it - the potatoes turn blue. Then drop a few drops of iodine into a glass with diluted starch. The liquid also turns blue.

Using a pipette, drop iodine dissolved in water onto an apple, banana, bread, one at a time.

We observe:

The apple did not turn blue at all. Banana - slightly blue. The bread turned very blue. This part of the experiment shows the presence of starch in various foods.

Discussion: Starch reacts with iodine to give a blue color. This property allows us to detect the presence of starch in various products. Thus, iodine is like an indicator or analyzer of starch content.

As you know, starch can be converted into sugar; if you take an unripe apple and drop iodine, it will turn blue, since the apple is not yet ripe. As soon as the apple is ripe, all the starch contained will turn into sugar and the apple, when treated with iodine, will not turn blue at all.

The following experience will be useful for children who have already started studying chemistry at school. It introduces concepts such as chemical reaction, compound reaction, and qualitative reaction.

Experiment No. 8 “Flame coloring or compound reaction”

Reagents and equipment: tweezers, table salt, alcohol lamp

Experiment: Using tweezers, take a few crystals of coarse table salt. Let's hold them over the flame of the burner. The flame will turn yellow.

Discussion: This experiment allows us to conduct chemical reaction combustion, which is an example of a compound reaction. Due to the presence of sodium in table salt, during combustion it reacts with oxygen. As a result, a new substance is formed - sodium oxide. The appearance of a yellow flame indicates that the reaction has completed. Such reactions are qualitative reactions to compounds containing sodium, that is, they can be used to determine whether a substance contains sodium or not.

Home experiments for 4-year-old children require imagination and knowledge of the simple laws of chemistry and physics. “If these sciences were not taught very well at school, you will have to make up for lost time,” many parents will think. This is not so, experiments can be very simple, not requiring special knowledge, skills and reagents, but at the same time explaining the fundamental laws of nature.

Experiments for children at home will help explain the properties of substances and the laws of their interaction using a practical example, and awaken interest in independent exploration of the world around them. Interesting physical experiments They will teach children to be observant, help them think logically, establishing patterns between ongoing events and their consequences. Perhaps the kids will not become great chemists, physicists or mathematicians, but they will forever retain warm memories of parental attention in their souls.

From this article you will learn

Unfamiliar paper

Kids like to make appliqués out of paper and draw pictures. Some 4-year-old children learn the art of origami with their parents. Everyone knows that paper is soft or thick, white or colored. What can a regular white sheet of paper do if you experiment with it?

An animated paper flower

Cut out a star from a sheet of paper. Its rays bend inward in the form of a flower. Fill a cup with water and lower the star onto the surface of the water. After some time, the paper flower, as if alive, will begin to open. The water will wet the cellulose fibers that make up the paper and spread them out.

Strong bridge

This paper experiment will be interesting for children 3 years old. Ask the kids how to place an apple in the middle of a thin sheet of paper between two glasses so that it does not fall. How can you make a paper bridge strong enough to support the weight of an apple? We fold a sheet of paper into an accordion shape and place it on the supports. Now it can support the weight of the apple. This can be explained by the fact that the shape of the structure has changed, which made the paper strong enough. The properties of materials that become stronger depending on their shape are the basis for the designs of many architectural creations, for example, the Eiffel Tower.

An animated snake

Scientific evidence of movement warm air can be brought up using simple experience. A snake is cut out of paper by cutting a circle in a spiral. You can revive a paper snake very simply. A small hole is made in her head and suspended by a thread above a heat source (battery, heater, burning candle). The snake will begin to rotate quickly. The reason for this phenomenon is the upward warm flow of air, which unwinds the paper snake. This is exactly how you can make paper birds or butterflies, beautiful and colorful, by hanging them under the ceiling in your apartment. They will rotate from the movement of air, as if flying.

Who is stronger

This fun experiment will help you determine which paper shape is stronger. For the experiment you will need three sheets of office paper, glue and several thin books. A cylindrical column is glued from one sheet of paper, a triangular column from another, and a rectangular column from the third. They place the “columns” vertically and test them for strength, carefully placing books on top. As a result of the experiment, it turns out that the triangular column is the weakest, and the cylindrical column is the strongest - it will withstand heaviest weight. It is not for nothing that columns in churches and buildings are made in a cylindrical shape; the load on them is distributed evenly over the entire area.

Amazing salt

Regular salt is found in every home today; not a single meal can be prepared without it. You can try making beautiful children's crafts from this affordable product. All you need is salt, water, wire and a little patience.

Salt has interesting properties. It can attract water to itself, dissolving in it, thereby increasing the density of the solution. But in a supersaturated solution, the salt again turns into crystals.

To conduct an experiment with salt, bend a beautiful symmetrical snowflake or other figure from a wire. Dissolve salt in a jar of warm water until it stops dissolving. Dip a bent wire into a jar and place it in the shade for several days. As a result, the wire will become overgrown with salt crystals, and will look like a beautiful ice snowflake that will not melt.

Water and ice

Water exists in three states of aggregation: steam, liquid and ice. The purpose of this experiment is to introduce children to the properties of water and ice and compare them.

Pour water into 4 ice trays and place them in the freezer. To make it more interesting, you can tint the water with different dyes before freezing. Poured into a cup cold water, and throw two ice cubes there. Simple ice boats or icebergs will float on the surface of the water. This experiment will prove that ice is lighter than water.

While the boats are floating, the remaining ice cubes are sprinkled with salt. They'll see what happens. After a short time, before the indoor float in the cup has time to sink (if the water is quite cold), the cubes sprinkled with salt will begin to crumble. This is explained by the fact that the freezing point of salt water is lower than normal water.

Fire that doesn't burn

In ancient times, when Egypt was a powerful country, Moses fled from the wrath of Pharaoh and tended flocks in the desert. One day he saw a strange bush that was burning and did not burn. It was a special fire. Can objects that are engulfed in ordinary flame remain safe and sound? Yes, this is possible, this can be proven through experience.

For the experiment you will need a sheet of paper or banknote. A tablespoon of alcohol and two tablespoons of water. The paper is moistened with water so that the water is absorbed into it, alcohol is poured on top and set on fire. Fire appears. This is burning alcohol. When the fire goes out, the paper will remain intact. Experimental result The explanation is very simple - the combustion temperature of alcohol, as a rule, is not enough to evaporate the moisture with which the paper is saturated.

Natural indicators

If your child wants to feel like a real chemist, you can make for him special paper, which will change color depending on the acidity of the environment.

The natural indicator is prepared from the juice of red cabbage, which contains anthocyanin. This substance changes color depending on what liquid it comes into contact with. In an acidic solution, paper soaked in anthocyanin will turn yellow, neutral solution will turn green, and in alkaline - blue.

To prepare a natural indicator, take filter paper, a head of red cabbage, cheesecloth and scissors. Chop the cabbage thinly and squeeze the juice through cheesecloth, squeezing it with your hands. Soak a sheet of paper in juice and dry. Then cut the made indicator into strips. The child can dip a piece of paper into four different liquids: milk, juice, tea or soap solution, and watch how the color of the indicator changes.

Electrification by friction

In ancient times, people noticed the special ability of amber to attract light objects if rubbed with a woolen cloth. They did not yet have knowledge about electricity, so they explained this property by the spirit living in the stone. It is from the Greek name for amber - electron - that the word electricity comes.

Such amazing properties not only amber has. You can conduct a simple experiment to see how a glass rod or plastic comb attracts small pieces of paper. To do this, rub the glass with silk and the plastic with wool. They will begin to attract small pieces of paper that will stick to them. Over time, this ability of items will disappear.

You can discuss with children that this phenomenon occurs due to electrification by friction. If fabric rubs quickly against an object, sparks may occur. Lightning in the sky and thunder are also a consequence of friction of air currents and the occurrence of electrical discharges in the atmosphere.

Solutions of different densities - interesting details

Get a colorful rainbow in a glass of liquids different colors You can prepare the jelly and pour it layer by layer. But there is a simpler way, although not as tasty.

To carry out the experiment you will need sugar, vegetable oil, plain water and dyes. Concentrated sweet syrup is prepared from sugar, and clean water is colored with dye. Sugar syrup is poured into a glass, then clean water is poured carefully along the wall of the glass so that the liquids do not mix, and vegetable oil is added at the end. The sugar syrup should be cold and the colored water should be warm. All liquids will remain in the glass like a small rainbow, without mixing with each other. The thickest sugar syrup will be at the bottom, the water will be at the top, and the lightest oil will be on top of the water.

Color explosion

Another interesting experiment can be carried out using different densities of vegetable oil and water, creating a color explosion in a jar. For the experiment you will need a jar of water, a few tablespoons of vegetable oil, and food coloring. In a small container, mix several dry food colors with two tablespoons of vegetable oil. Dry grains of dyes do not dissolve in oil. Now the oil is poured into a jar of water. Heavy grains of dye will settle to the bottom, gradually freeing themselves from the oil, which will remain on the surface of the water, forming colored swirls, as if from an explosion.

Home volcano

Useful geographic knowledge may not be so boring for a four-year-old if you provide a visual demonstration of a volcano erupting on an island. To carry out the experiment you will need baking soda, vinegar, 50 ml of water and the same amount of detergent.

A small plastic cup or bottle is placed in the mouth of a volcano, molded from colored plasticine. But first, baking soda is poured into a glass, water tinted red and detergent are poured. When the improvised volcano is ready, a little vinegar is poured into its mouth. A rapid foaming process begins due to the fact that soda and vinegar react. “Lava” formed by red foam begins to pour out of the volcano’s mouth.

Experiments for 4-year-old children, as you have seen, do not require complex reagents. But they are no less fascinating, especially with an interesting story about the reason for what is happening.

A small selection of entertaining experiences and experiments for children.

Chemical and physical experiments

Solvent

For example, try dissolving everything around with your child! We take a saucepan or basin with warm water, and the child begins to put everything there that, in his opinion, can dissolve. Your task is to prevent valuable things and living creatures from being thrown into the water, look in surprise into the container with your baby to find out if spoons, pencils, handkerchiefs, erasers, and toys have dissolved there. and offer substances such as salt, sugar, soda, milk. The child will happily start dissolving them too and, believe me, will be very surprised when he realizes that they are dissolving!
Water changes color when exposed to other chemicals. The substances themselves, interacting with water, also change, in our case they dissolve. The following two experiments are devoted to this property of water and some substances.

Magic water

Show your child how, as if by magic, water in an ordinary jar changes its color. IN glass jar or pour a glass of water and dissolve a phenolphthalein tablet in it (it is sold in a pharmacy and is better known as “Purgen”). The liquid will be clear. Then add a solution of baking soda - it will turn an intense pink-raspberry color. Having enjoyed this transformation, add vinegar or citric acid - the solution will become discolored again.

"Live" fish

First, prepare a solution: add 10 g of dry gelatin to a quarter glass of cold water and let it swell well. Heat the water to 50 degrees in a water bath and make sure that the gelatin is completely dissolved. Pour out the solution thin layer on plastic film and let air dry. From the resulting thin leaf you can cut out the silhouette of a fish. Place the fish on a napkin and breathe on it. Breathing will moisten the jelly, it will increase in volume, and the fish will begin to bend.

Lotus flowers

Cut out flowers with long petals from colored paper. Using a pencil, curl the petals towards the center. Now lower the multi-colored lotuses into the water poured into the basin. Literally before your eyes, flower petals will begin to bloom. This happens because the paper gets wet, gradually becomes heavier, and the petals open. The same effect can be observed with ordinary spruce or pine cones. You can invite children to leave one cone in the bathroom (a damp place) and later be surprised that the scales of the cone have closed and they have become dense, and put the other one on the radiator - the cone will open its scales.

Islands

Water can not only dissolve certain substances, but also has a number of other remarkable properties. For example, it is able to cool hot substances and objects, while they become harder. The experience below will not only help you understand this, but will also allow your little one to create his own world with mountains and seas.
Take a saucer and pour water into it. We paint with paints bluish-greenish or any other color. This is the Sea. Then we take a candle and, as soon as the paraffin in it melts, we turn it over the saucer so that it drips into the water. Changing the height of the candle above the saucer, we get different shapes. Then these “islands” can be connected to each other, you can see what they look like, or you can take them out and glue them onto paper with a drawn sea.

In search of fresh water

How to get drinking water from salt water? Pour water into a deep basin with your child, add two tablespoons of salt there, stir until the salt dissolves. To the bottom of the empty plastic glass place washed pebbles so that it does not float, but its edges should be above the water level in the basin. Pull the film over the top, tying it around the pelvis. Squeeze the film in the center above the cup and place another pebble in the recess. Place the basin in the sun. After a few hours, pure unsalted water will accumulate in the glass. drinking water. This is explained simply: water begins to evaporate in the sun, condensation settles on the film and flows into an empty glass. The salt does not evaporate and remains in the basin.
Now that you know how to get fresh water, you can safely go to the sea and not be afraid of thirst. There is a lot of liquid in the sea, and you can always get the purest drinking water from it.

Making a cloud

Pour hot water into a three-liter jar (about 2.5 cm). Place a few ice cubes on a baking sheet and place it on top of the jar. The air inside the jar will begin to cool as it rises. The water vapor it contains will condense to form a cloud.

Where does rain come from? It turns out that the drops, having heated up on the ground, rise upward. There they get cold, and they huddle together, forming clouds. When they meet together, they increase in size, become heavy and fall to the ground as rain.

Vulcan on the table

Mom and dad can be wizards too. They can even do it. a real volcano! Arm yourself " with a magic wand", cast the spell, and the "eruption" will begin. Here is a simple recipe for witchcraft: add vinegar to baking soda as we do for the dough. Only there should be more soda, say 2 tablespoons. Place it in a saucer and pour vinegar straight from the bottle. A violent neutralization reaction will occur, the contents of the saucer will begin to foam and boil with large bubbles (be careful not to bend over!). For greater effect, you can fashion a “volcano” (a cone with a hole at the top) out of plasticine, place it on a saucer with soda, and pour vinegar into the hole from above. At some point, foam will begin to splash out of the “volcano” - the sight is simply fantastic!
This experiment clearly shows the interaction of alkali with acid, the neutralization reaction. By preparing and carrying out an experiment, you can tell your child about the existence of acidic and alkaline environments. The “Homemade Carbonated Water” experiment, which is described below, is devoted to the same topic. And older kids can continue to study them with the following exciting experience.

Table of natural indicators

Many vegetables, fruits and even flowers contain substances that change color depending on the acidity of the environment. From available material (fresh, dried or ice cream), prepare a decoction and test it in an acidic and alkaline environment (the decoction itself is a neutral environment, water). A solution of vinegar or citric acid is suitable as an acidic medium, and a soda solution is suitable for an alkaline medium. You just need to cook them immediately before the experiment: they will spoil over time. Tests can be carried out as follows: empty cells from under the eggs, pour, say, a solution of soda and vinegar (each in its own row, so that opposite each cell with acid there is a cell with alkali). Drop (or better yet, pour) a little freshly prepared broth or juice into each pair of cells and observe the color change. Enter the results into a table. The color change can be recorded, or you can paint it with paints: they are easier to achieve the desired shade.
If your child is older, he will most likely want to take part in the experiments himself. Give him a strip of universal indicator paper (sold in chemical supply stores and gardening stores) and offer to moisten it with any liquid: saliva, tea, soup, water - whatever. The moistened area will color, and using the scale on the box you can determine whether it is acidic or acidic. alkaline environment you have researched. Usually this experience causes a storm of delight in children and gives parents a lot of free time.

Salt miracles

Have you already grown crystals with your baby? It's not difficult at all, but it will take a few days. Prepare a supersaturated salt solution (one in which the salt does not dissolve when adding a new portion) and carefully lower a seed into it, say, a wire with a small loop at the end. After some time, crystals will appear on the seed. You can experiment and dip not a wire, but a woolen thread, into the salt solution. The result will be the same, but the crystals will be distributed differently. For those who are especially keen, I recommend making wire crafts, such as a Christmas tree or a spider, and also placing them in a salt solution.

Secret letter

This experience can be combined with the popular game “Find the Treasure,” or you can simply write to someone at home. There are two ways to make such a letter at home: 1. Dip a pen or brush in milk and write a message on white paper. Be sure to let it dry. You can read such a letter by holding it over steam (don’t get burned!) or ironing it. 2. Write a letter with lemon juice or citric acid solution. To read it, dissolve a few drops of pharmaceutical iodine in water and lightly moisten the text.
Is your child already grown up or have you gained the taste yourself? Then the following experiments are for you. They are somewhat more complicated than those previously described, but it is quite possible to cope with them at home. Still be very careful with reagents!

Coca-Cola fountain

Coca-Cola (a solution of phosphoric acid with sugar and dye) reacts very interestingly when Mentos lozenges are placed in it. The reaction is expressed in a fountain literally gushing out of the bottle. It is better to do such an experiment on the street, since the reaction is poorly controlled. It’s better to crush Mentos a little, and take a liter of Coca-Cola. The effect exceeds all expectations! After this experience, I don’t really want to take all this stuff internally. I recommend conducting this experiment with children who love chemical drinks and sweets.

Drown and eat

Wash two oranges. Place one of them in a saucepan filled with water. He will float. Try to drown him - it will never work!
Peel the second orange and place it in water. Are you surprised? The orange drowned. Why? Two identical oranges, but one drowns and the other floats? Explain to your child: “There are a lot of air bubbles in an orange peel. They push the orange to the surface of the water. Without the peel, the orange sinks because it is heavier than the water it displaces.”

Live yeast

Tell children that yeast is made up of tiny living organisms called microbes (which means that microbes can be beneficial as well as harmful). As they feed, they emit carbon dioxide, which, when mixed with flour, sugar and water, “raises” the dough, making it fluffy and tasty. Dry yeast looks like small lifeless balls. But this is only until millions of tiny microbes that lie dormant in a cold and dry state come to life. But they can be revived! Pour two tablespoons into a jug warm water, add two teaspoons of yeast to it, then one teaspoon of sugar and stir. Pour the yeast mixture into the bottle, stretching it over the neck balloon. Place the bottle in a bowl of warm water. And then a miracle will happen before the eyes of the children.
The yeast will come to life and begin to eat sugar, the mixture will be filled with bubbles of carbon dioxide, already familiar to children, which they begin to emit. The bubbles burst and the gas inflates the balloon.

"Bait" for ice

1. Place the ice in the water.

2. Place the thread on the edge of the glass so that one end of it lies on an ice cube floating on the surface of the water.

3. Sprinkle some salt on the ice and wait 5-10 minutes.

4. Take the free end of the thread and pull out the ice cube from the glass.

Salt, once on the ice, slightly melts a small area of ​​it. Within 5-10 minutes, the salt dissolves in water, and pure water freezes on the ice surface along with the thread.

physics.

If you make several holes in a plastic bottle, it will become even more interesting to study its behavior in water. First, make a hole in the side of the bottle just above the bottom. Fill a bottle with water and watch with your baby how it pours out. Then poke a few more holes, one above the other. How will the water flow now? Will the baby notice that the lower the hole, the more powerful the fountain comes out of it? Let the kids experiment with the pressure of the jets for their own pleasure, and explain to older children that water pressure increases with depth. That’s why the bottom fountain hits the hardest.

Why does an empty bottle float and a full one sink? And what are these funny bubbles that pop out of the neck of an empty bottle if you remove the cap and put it under water? What will happen to water if you first pour it into a glass, then into a bottle, and then pour it into a rubber glove? Draw your child's attention to the fact that the water takes the shape of the vessel into which it was poured.

Does your baby already determine the water temperature by touch? It’s great if, by lowering the handle into the water, he can tell whether the water is warm, cold or hot. But not everything is so simple; pens can be easily deceived. For this trick you will need three bowls. Pour cold water into the first, hot water into the second (but such that you can safely put your hand in it), and room temperature water into the third. Now suggest baby put one hand in a bowl of hot water, the other - into a bowl of cold. Let him hold his hands there for about a minute, and then plunge them into the third bowl, which contains room water. Ask baby what he feels. Even though your hands are in the same bowl, the sensations will be completely different. Now you can no longer say for sure whether it is hot or cold water.

Soap bubbles in the cold

To experiment with soap bubbles in the cold, you need to prepare shampoo or soap diluted in snow water, to which a small amount of pure glycerin has been added, and a plastic tube from a ballpoint pen. It is easier to blow bubbles in a closed, cold room, since winds almost always blow outside. Large bubbles are easily blown out using a plastic funnel for pouring liquids.

When cooled slowly, the bubble freezes at approximately –7°C. The surface tension coefficient of the soap solution increases slightly when cooled to 0°C, and with further cooling below 0°C it decreases and becomes equal to zero at the moment of freezing. The spherical film will not shrink, even though the air inside the bubble is compressed. Theoretically, the diameter of the bubble should decrease during cooling to 0°C, but by such a small amount that in practice this change is very difficult to determine.

The film turns out to be not fragile, as it would seem that a thin crust of ice should be. If you allow a crystallized soap bubble to fall to the floor, it will not break or turn into ringing fragments, like a glass ball used to decorate a Christmas tree. Dents will appear on it, and individual fragments will twist into tubes. The film turns out to be not brittle, it exhibits plasticity. The plasticity of the film turns out to be a consequence of its small thickness.

We present to your attention four entertaining experiments with soap bubbles. The first three experiments should be carried out at a temperature of –15...–25°C, and the last one at –3...–7°C.

Experience 1

Take the jar of soapy solution to severe frost and blow the bubble. Immediately at different points Small crystals appear on the surface, grow rapidly and finally merge. As soon as the bubble freezes completely, a dent will form in its upper part, near the end of the tube.

The air in the bubble and the bubble shell are cooler in the lower part, since there is a less cooled tube at the top of the bubble. Crystallization spreads from bottom to top. The less cooled and thinner (due to swelling of the solution) upper part of the bubble shell bends under the influence of atmospheric pressure. The more the air inside the bubble cools, the larger the dent becomes.

Experience 2

Dip the end of the tube into the soapy solution and then remove it. At the lower end of the tube there will be a column of solution about 4 mm high. Place the end of the tube against the surface of your palm. The column will decrease greatly. Now blow the bubble until a rainbow color appears. The bubble turned out to have very thin walls. Such a bubble behaves in a peculiar way in the cold: as soon as it freezes, it immediately bursts. So it is never possible to get a frozen bubble with very thin walls.

The thickness of the bubble wall can be considered equal to the thickness of the monomolecular layer. Crystallization begins at individual points on the film surface. The water molecules at these points must come closer to each other and arrange themselves in a certain order. Rearrangements in the arrangement of water molecules and relatively thick films do not lead to disruption of the bonds between water and soap molecules, but the thinnest films are destroyed.

Experience 3

Pour equal amounts of soap solution into two jars. Add a few drops of pure glycerin to one. Now blow two approximately equal bubbles from these solutions one after the other and place them on a glass plate. Freezing of a bubble with glycerin proceeds a little differently than a bubble from a shampoo solution: the onset is delayed, and the freezing itself is slower. Please note: a frozen bubble from a shampoo solution will remain in the cold longer than a frozen bubble with glycerin.

The walls of a frozen bubble from a shampoo solution are a monolithic crystalline structure. Intermolecular bonds anywhere are exactly the same and strong, while in a frozen bubble from the same solution with glycerol, the strong bonds between water molecules are weakened. In addition, these bonds are disrupted by the thermal movement of glycerol molecules, so the crystal lattice quickly sublimates, which means it collapses faster.

Glass bottle and ball.

Warm the bottle well, put the ball on the neck. Now let's put the bottle in a basin with cold water- the ball will be “swallowed” by the bottle!

Match training.

We put a few matches in a bowl of water, drop a piece of refined sugar into the center of the bowl and - lo and behold! The matches will gather in the center. Perhaps our matches have a sweet tooth!? Now let’s remove the sugar and drop a little liquid soap into the center of the bowl: the matches don’t like this - they “scatter” in different directions! In fact, everything is simple: sugar absorbs water, thereby creating its movement towards the center, and soap, on the contrary, spreads over the water and carries matches along with it.

Cinderella. static voltage.

We need a balloon again, only already inflated. Place a teaspoon of salt and ground pepper on the table. Mix well. Now let's imagine ourselves as Cinderellas and try to separate the pepper from the salt. It doesn’t work... Now let’s rub our ball on something woolen and bring it to the table: all the pepper, as if by magic, will end up on the ball! We enjoy the miracle, and whisper to older young physicists that the ball becomes negatively charged from friction with the wool, and the peppercorns, or rather the electrons of the pepper, acquire a positive charge and are attracted to the ball. But in salt electrons they move poorly, so it remains neutral, does not acquire a charge from the ball, and therefore does not stick to it!

Pipette straw

1. Place 2 glasses next to each other: one with water, the other empty.

2. Place the straw in the water.

3. Pinch the straw on top with your index finger and transfer it to the empty glass.

4. Remove your finger from the straw - the water will flow into the empty glass. By doing the same thing several times, we will be able to transfer all the water from one glass to another.

A pipette, which you probably have in your home medicine cabinet, works on the same principle.

Straw-flute

1. Flatten the end of the straw about 15 mm long and trim its edges with scissors2. At the other end of the straw, cut 3 small holes at the same distance from each other.

So we got a “flute”. If you blow lightly into a straw, slightly squeezing it with your teeth, the “flute” will begin to sound. If you close one or the other hole of the “flute” with your fingers, the sound will change. Now let's try to find some melody.

Additionally.

Entertaining experiences and experiments for kids.

1. Smell, taste, touch, listen
Task: to consolidate children’s ideas about the sense organs, their purpose (ears - to hear, recognize various sounds; nose - to determine the smell; fingers - to determine the shape, structure of the surface; tongue - to determine the taste).

Materials: a screen with three round slits (for hands and nose), newspaper, bell, hammer, two stones, rattle, whistle, talking doll, Kinder surprise cases with holes; in cases: garlic, orange slice; foam rubber with perfume, lemon, sugar.

Description. There are newspapers, a bell, a hammer, two stones, a rattle, a whistle, and a talking doll laid out on the table. Grandfather Know invites the children to play with him. Children are given the opportunity to explore subjects independently. During this acquaintance, grandfather Know talks with the children, asking questions, for example: “What do these objects sound like?”, “How were you able to hear these sounds?” etc.
The game “Guess what sounds” - a child behind a screen chooses an object with which he then makes a sound, other children guess. They name the object that produced the sound and say that they heard it with their ears.
The game “Guess by Smell” - children put their noses to the window of the screen, and the teacher offers to guess by smell what is in his hands. What is this? How did you find out? (The nose helped us.)
Game “Guess the taste” - the teacher asks the children to guess the taste of lemon and sugar.
Game “Guess by touch” - children put their hand into the hole in the screen, guess the object and then take it out.
Name our assistants who help us recognize an object by sound, smell, taste. What would happen if we didn't have them?

2. Why does everything sound?
Task: to lead children to understand the causes of sound: vibration of an object.

Materials: tambourine, glass cup, newspaper, balalaika or guitar, wooden ruler, metallophone

Description: Game "What does it sound like?" - the teacher invites the children to close their eyes, and he makes sounds using known objects. Children guess what it sounds like. Why do we hear these sounds? What is sound? Children are asked to imitate in their voice: what does a mosquito call? (Z-z-z.)
How does a fly buzz? (Zh-zh.) How does a bumblebee buzz? (Uh-uh.)
Then each child is invited to touch the string of the instrument, listen to its sound and then touch the string with his palm to stop the sound. What happened? Why did the sound stop? The sound continues as long as the string vibrates. When she stops, the sound also disappears.
Does a wooden ruler have a voice? Children are asked to make a sound using a ruler. We press one end of the ruler to the table, and clap the free end with our palm. What happens to the ruler? (Trembles, hesitates.) How to stop the sound? (Stop the vibration of the ruler with your hand.) Extract the sound from the glass glass using a stick, stop. When does sound arise? The sound occurs when air moves back and forth very quickly. This is called oscillation. Why does everything sound? What other objects can you name that will sound?

3. Clear water
Task: to identify the properties of water (transparent, odorless, pours, has weight).

Materials: two opaque jars (one filled with water), a glass jar with a wide neck, spoons, small ladles, a bowl of water, a tray, object pictures.

Description. Droplet came to visit. Who is Droplet? What does she like to play with?
On the table, two opaque jars are closed with lids, one of them is filled with water. Children are asked to guess what is in these jars without opening them. Are they the same weight? Which one is easier? Which one is heavier? Why is it heavier? We open the jars: one is empty - therefore light, the other is filled with water. How did you guess that it was water? What color is it? What does the water smell like?
An adult invites the children to fill a glass jar with water. To do this, they are offered a variety of containers to choose from. What is more convenient to pour? How to prevent water from spilling on the table? What are we doing? (Pour, pour water.) What does water do? (It pours.) Let's listen to how it pours. What sound do we hear?
When the jar is filled with water, children are invited to play the game “Recognize and Name” (looking at pictures through the jar). What did you see? Why is the picture so clear?
What kind of water? (Transparent.) What have we learned about water?

4. Water takes shape
Task: to reveal that water takes the shape of the vessel into which it is poured.

Materials, funnels, a narrow tall glass, a round vessel, a wide bowl, a rubber glove, ladles of the same size, an inflatable ball, a plastic bag, a bowl of water, trays, worksheets with sketched shapes of the vessels, colored pencils.

Description. In front of the children is a basin of water and various vessels. Little Chick Curiosity tells how he was walking, swimming in puddles, and he had a question: “Can water have some kind of shape?” How can I check this? What shape are these vessels? Let's fill them with water. What is more convenient to pour water into a narrow vessel? (Use a ladle through a funnel.) Children pour two ladles of water into all vessels and determine whether the amount of water in different vessels is the same. Consider the shape of water in different vessels. It turns out that water takes the shape of the vessel into which it is poured. The worksheet sketches the results obtained - children paint over various vessels

5. Foam pillow
Objective: to develop in children an idea of ​​the buoyancy of objects in soap suds(buoyancy does not depend on the size of the object, but on its weight).

Materials: on a tray there is a bowl of water, whisks, a jar of liquid soap, pipettes, a sponge, a bucket, wooden sticks, various items for testing buoyancy.

Description. Misha the bear tells what he learned to do not only bubble, but also soap suds. And today he wants to find out whether all objects sink in soap suds? How to make soap foam?
Children use a pipette to collect liquid soap and release it into a bowl of water. Then try to beat the mixture with chopsticks and a whisk. What is more convenient for whipping foam? What kind of foam did you get? They try to dip various objects into the foam. What floats? What's sinking? Do all objects float equally on water?
Are all objects that float the same size? What determines the buoyancy of objects?

6. Air is everywhere
The task is to detect air in the surrounding space and identify its property - invisibility.

Materials, balloons, bowl of water, empty plastic bottle, sheets of paper.

Description. Little Chick Curious asks the children a riddle about air.
It goes through the nose into the chest and goes back. He is invisible, and yet we cannot live without him. (Air)
What do we inhale through our nose? What is air? What is it for? Can we see it? Where is the air? How do you know if there is air around?
Game exercise “Feel the air” - children wave a sheet of paper near their face. What do we feel? We don't see air, but it surrounds us everywhere.
Do you think there is empty bottle air? How can we check this? An empty transparent bottle is lowered into a basin of water until it begins to fill. What's happening? Why do bubbles come out of the neck? This water displaces the air from the bottle. Most objects that appear empty are actually filled with air.
Name the objects that we fill with air. Children inflate balloons. What do we fill the balloons with?
Air fills every space, so nothing is empty.

7. Air works
Objective: to give children the idea that air can move objects ( sailing ships, balloons, etc.).

Materials: plastic bath, basin with water, sheet of paper; a piece of plasticine, a stick, balloons.

Description. Grandfather Know invites children to look at the balloons. What's inside them? What are they filled with? Can air move objects? How can this be checked? He launches an empty plastic bathtub into the water and asks the children: “Try to make it float.” Children blow on it. What can you come up with to make the boat float faster? Attaches the sail and gets the boat moving again. Why does a boat move faster with a sail? There is more air pressing on the sail, so the bath moves faster.
What other objects can we make move? How can you make a balloon move? The balls are inflated and released, and the children watch their movement. Why is the ball moving? Air escapes from the ball and causes it to move.
Children play independently with a boat and a ball

8. Every pebble has its own home
Tasks: classification of stones by shape, size, color, surface features (smooth, rough); Show children the possibility of using stones for play purposes.

Materials: various stones, four boxes, trays with sand, a model for examining an object, pictures and diagrams, a path of pebbles.

Description. The bunny gives the children a chest with various pebbles that he collected in the forest, near the lake. The children look at them. How are these stones similar? They act in accordance with the model: they press on the stones, knock. All stones are hard. How do the stones differ from each other? Then he draws the children’s attention to the color and shape of the stones and invites them to feel them. He notes that some stones are smooth and some are rough. The bunny asks you to help him arrange the stones into four boxes according to the following characteristics: first - smooth and round; in the second - small and rough; in the third - large and not round; in the fourth - reddish. Children work in pairs. Then everyone looks together at how the stones are laid out and counts the number of stones.
Game with pebbles “Lay out a picture” - the bunny hands out picture diagrams to the children (Fig. 3) and invites them to lay them out from pebbles. Children take trays with sand and lay out a picture in the sand according to the diagram, then lay out the picture as they wish.
Children walk along a path made of pebbles. How do you feel? What pebbles?

9. Is it possible to change the shape of stone and clay?
Task: to identify the properties of clay (wet, soft, viscous, you can change its shape, divide it into parts, sculpt) and stone (dry, hard, you cannot sculpt from it, it cannot be divided into parts).

Materials: boards for modeling, clay, river stone, model of examining the object.

Description. Using the model of examining an object, grandfather Znay invites children to find out whether it is possible to change the shape of the proposed natural materials. To do this, he invites the children to press their finger on the clay or stone. Where is the finger hole left? What stone? (Dry, hard.) What kind of clay? (Wet, soft, holes remain.) Children take turns taking the stone in their hands: crushing it, rolling it in their palms, pulling it in different directions. Has the stone changed shape? Why can't you break off a piece of it? (The stone is hard, you cannot mold anything from it with your hands, it cannot be divided into parts.) Children take turns crushing the clay, pulling in different directions, dividing it into parts. What is the difference between clay and stone? (Clay is not like stone, it is soft, it can be divided into parts, clay changes shape, you can sculpt from it.)
Children sculpt various figures from clay. Why don't the figures fall apart? (Clay is viscous and retains its shape.) What other material is similar to clay?

10. Light is everywhere
Objectives: show the meaning of light, explain that light sources can be natural (sun, moon, fire), artificial - made by people (lamp, flashlight, candle).

Materials: illustrations of events taking place in different time days; pictures with images of light sources; several objects that do not provide light; flashlight, candle, table lamp, chest with a slot.

Description. Grandfather Know invites children to determine whether it is dark or light now and explain their answer. What's shining now? (Sun.) What else can illuminate objects when it is dark in nature? (Moon, fire.) Invites children to find out what is in the “magic chest” (a flashlight inside). The children look through the slot and note that it is dark and nothing can be seen. How can I make the box lighter? (Open the chest, then light will come in and illuminate everything inside it.) Open the chest, light will come in, and everyone will see a flashlight.
And if we don’t open the chest, how can we make it light? He lights a flashlight and puts it in the chest. Children look at the light through the slot.
The game “Light can be different” - grandfather Znay invites children to sort the pictures into two groups: light in nature, artificial light - made by people. What shines brighter - a candle, a flashlight, a table lamp? Demonstrate the action of these objects, compare, arrange pictures depicting these objects in the same sequence. What shines brighter - the sun, the moon, a fire? Compare the pictures and sort them according to the brightness of the light (from the brightest).

11. Light and shadow
Objectives: to introduce the formation of shadows from objects, to establish the similarity between a shadow and an object, to create images using shadows.

Materials: equipment for shadow theater, lantern.

Description. Misha the bear comes with a flashlight. The teacher asks him: “What do you have? What do you need a flashlight for? Misha offers to play with him. The lights turn off and the room goes dark. Children, with the help of a teacher, shine a flashlight and look at different objects. Why do we see everything clearly when a flashlight is shining? Misha places his paw in front of the flashlight. What do we see on the wall? (Shadow.) Offers the children to do the same. Why is a shadow formed? (The hand interferes with the light and does not allow it to reach the wall.) The teacher suggests using the hand to show the shadow of a bunny or dog. Children repeat. Misha gives the children a gift.
Game "Shadow Theater". The teacher takes out a shadow theater from the box. Children examine equipment for a shadow theater. What is unusual about this theater? Why are all the figures black? What is a flashlight for? Why is this theater called shadow theater? How is a shadow formed? Children, together with the bear cub Misha, look at animal figures and show their shadows.
Showing a familiar fairy tale, for example “Kolobok”, or any other.

12. Frozen water
Task: to reveal that ice is a solid substance, floats, melts, and consists of water.

Materials, pieces of ice, cold water, plates, a picture of an iceberg.

Description. In front of the children is a bowl of water. They discuss what kind of water it is, what shape it is. Water changes shape because
she is liquid. Can water be solid? What happens to water if it is cooled too much? (The water will turn into ice.)
Examine the pieces of ice. How is ice different from water? Can ice be poured like water? The children are trying to do this. Which
ice shapes? Ice retains its shape. Anything that retains its shape, like ice, is called a solid.
Does ice float? The teacher puts a piece of ice in a bowl and the children watch. How much ice floats? (Top.)
Huge blocks of ice float in the cold seas. They are called icebergs (show picture). Above the surface
Only the tip of the iceberg is visible. And if the ship's captain does not notice and stumbles upon the underwater part of the iceberg, the ship may sink.
The teacher draws the children's attention to the ice that was in the plate. What happened? Why did the ice melt? (The room is warm.) What has the ice turned into? What is ice made of?
“Playing with ice floes” is a free activity for children: they choose plates, examine and observe what happens to the ice floes.

13. Melting Ice
Task: determine that ice melts from heat, from pressure; that it melts faster in hot water; that water freezes in the cold and also takes the shape of the container in which it is located.

Materials: plate, bowl of hot water, bowl of cold water, ice cubes, spoon, watercolor paints, strings, various molds.

Description. Grandfather Know suggests guessing where ice grows faster - in a bowl of cold water or in a bowl of hot water. He lays out the ice and the children watch the changes taking place. The time is recorded using numbers that are laid out near the bowls, and the children draw conclusions. Children are invited to look at a colored piece of ice. What kind of ice? How is this piece of ice made? Why does the string hold on? (Frozen to a piece of ice.)
How can you get colorful water? Children add colored paints of their choice to the water, pour them into molds (everyone has different molds) and place them on trays in the cold.

14. Multi-colored balls
Task: to obtain new shades by mixing primary colors: orange, green, purple, blue.

Materials: palette, gouache paints: blue, red, (blue, yellow; rags, water in glasses, sheets of paper with an outline image (4-5 balls for each child), models - colored circles and half circles (corresponding to the colors of the paints) , worksheets.

Description. The bunny brings the children sheets with pictures of balls and asks them to help him color them. Let's find out from him what color balls he likes best. What if we don’t have blue, orange, green and purple paints?
How can we make them?
Children and the bunny mix two colors each. If the desired color is obtained, the mixing method is fixed using models (circles). Then the children use the resulting paint to paint the ball. So children experiment until they get all the necessary colors. Conclusion: by mixing red and yellow paint, you can get Orange color; blue with yellow - green, red with blue - purple, blue with white - blue. The results of the experiment are recorded in the worksheet

15. Mysterious pictures
Task: show children that surrounding objects change color if you look at them through colored glasses.

Materials: colored glasses, worksheets, colored pencils.

Description. The teacher invites the children to look around them and name what color objects they see. Everyone together counts how many colors the children named. Do you believe that the turtle sees everything only in green? This is true. Would you like to look at everything around you through the eyes of a turtle? How can I do that? The teacher hands out green glasses to the children. What do you see? How else would you like to see the world? Children look at objects. How to get colors if we don't have the right pieces of glass? Children get new shades by placing glasses - one on top of the other.
Children sketch “mysterious pictures” on a worksheet

16. We will see everything, we will know everything
Task: to introduce the assistant device - the magnifying glass and its purpose.

Materials: magnifying glasses, small buttons, beads, zucchini seeds, sunflower seeds, small pebbles and other objects for examination, worksheets, colored pencils.

Description. The children receive a “gift” from their grandfather. Knowing it, they look at it. What is this? (Bead, button.) What does it consist of? What is it for? Grandfather Know suggests looking at a small button or bead. How can you see better - with your eyes or with the help of this piece of glass? What is the secret of the glass? (Magnifies objects so they can be seen better.) This assistant device is called a “magnifying glass.” Why does a person need a magnifying glass? Where do you think adults use magnifying glasses? (When repairing and making watches.)
Children are invited to independently examine the objects at their request, and then sketch on the worksheet what
the object actually is and what it is like if you look through a magnifying glass

17. Sand Country
Objectives: highlight the properties of sand: flowability, friability, you can sculpt from wet sand; introduce the method of making a picture from sand.

Materials: sand, water, magnifying glasses, sheets of thick colored paper, glue sticks.

Description. Grandfather Znay invites children to look at the sand: what color it is, try it by touch (loose, dry). What is sand made of? What do grains of sand look like? How can we look at grains of sand? (Using a magnifying glass.) The grains of sand are small, translucent, round, and do not stick to each other. Is it possible to sculpt from sand? Why can't we change anything from dry sand? Let's try to mold it from wet. How can you play with dry sand? Is it possible to paint with dry sand?
Children are asked to draw something on thick paper with a glue stick (or trace a finished drawing),
and then pour sand onto the glue. Shake off excess sand and see what happens. Everyone looks at children's drawings together

18. Where is the water?
Objectives: to identify that sand and clay absorb water differently, to highlight their properties: flowability, friability.

Materials: transparent containers with dry sand, dry clay, measuring cups with water, magnifying glass.

Description. Grandfather Znay invites children to fill cups with sand and clay as follows: first pour
dry clay (half), and fill the second half of the glass with sand on top. After this, the children examine the filled glasses and tell what they see. Then the children are asked to close their eyes and guess by the sound what Grandfather Know is pouring out. Which fell better? (Sand.) Children pour sand and clay onto trays. Are the slides the same? (A sand slide is smooth, a clay slide is uneven.) Why are the slides different?
Examine particles of sand and clay through a magnifying glass. What is sand made of? (The grains of sand are small, translucent, round, and do not stick to each other.) What does clay consist of? (The clay particles are small, pressed closely together.) What happens if you pour water into cups with sand and clay? Children try to do this and observe. (All the water has gone into the sand, but stands on the surface of the clay.)
Why doesn't clay absorb water? (In clay, the particles are closer to each other and do not allow water to pass through.) Everyone remembers together where there are more puddles after rain - on the sand, on the asphalt, on clay soil. Why are paths in the garden sprinkled with sand? (To absorb water.)

19. Water mill
Objective: to give an idea that water can set other objects in motion.

Materials: toy water mill, basin, jug with water, rag, aprons according to the number of children.

Description. Grandfather Znay talks with children about why water is needed for people. During the conversation, the children remember it in their own way. Can water make other things work? After the children’s answers, grandfather Znay shows them a water mill. What is this? How to make the mill work? Children hum their aprons and roll up their sleeves; take a jug of water right hand, and with the left they support it near the spout and pour water onto the blades of the mill, directing the stream of water to the center of the fall. What do we see? Why is the mill moving? What sets her in motion? Water drives the mill.
Children play with a mill.
It is noted that if you pour water in a small stream, the mill works slowly, and if you pour it in a large stream, the mill works faster.

20. Ringing water
Task: show children that the amount of water in a glass affects the sound made.

Materials: a tray on which there are various glasses, water in a bowl, ladles, “fishing rods” with a thread with a plastic ball attached to the end.

Description. There are two glasses filled with water in front of the children. How to make glasses sound? All the children’s options are checked (knock with a finger, objects that the children offer). How to make the sound louder?
A stick with a ball at the end is offered. Everyone listens to the clinking of glasses of water. Are we hearing the same sounds? Then grandfather Znay pours and adds water to the glasses. What affects the ringing? (The amount of water affects the ringing, the sounds are different.) Children try to compose a melody

21. "Guessing Game"
Task: show children that objects have weight, which depends on the material.

Materials: objects of the same shape and size from different materials: wood, metal, foam rubber, plastic;
container with water; container with sand; balls of different materials of the same color, sensory box.

Description. In front of the children are various pairs of objects. Children look at them and determine how they are similar and how they differ. (Similar in size, different in weight.)
They take objects in their hands and check the difference in weight!
Guessing game - children select objects from the sensory box by touch, explaining how they guessed whether it is heavy or light. What determines the lightness or heaviness of an object? (Depending on what material it is made of.) With their eyes closed, children are asked to determine by the sound of an object falling on the floor whether it is light or heavy. (A heavy object makes a louder impact sound.)
They also determine whether an object is light or heavy by the sound of an object falling into the water. (The splash is stronger from a heavy object.) Then they throw the objects into a basin of sand and determine whether the object was carried by the depression left after the fall in the sand. (A heavy object makes a larger depression in the sand.

22. Catch, little fish, both small and great
Task: find out the ability of a magnet to attract certain objects.

Materials: magnetic game “Fishing”, magnets, small objects from different materials, a bowl of water, worksheets.

Description. The fishing cat offers children the game “Fishing”. What can you use to catch fish? They try to catch with a fishing rod. They tell whether any of the children have seen real fishing rods, what they look like, and what kind of bait the fish are caught with. What do we use to catch fish? Why does she hold on and not fall?
They examine the fish and fishing rod and discover metal plates and magnets.
What objects does a magnet attract? Children are offered magnets, various objects, and two boxes. They put objects that are attracted by a magnet into one box, and objects that are not attracted into another box. A magnet only attracts metal objects.
What other games have you seen magnets in? Why does a person need a magnet? How does he help him?
Children are given worksheets in which they complete the task “Draw a line to the magnet from the object that is attracted to it.”

23. Tricks with magnets
Task: identify objects that interact with a magnet.

Materials: magnets, a goose cut out of foam plastic with a metal one inserted into its beak. rod; a bowl of water, a jar of jam, and mustard; wooden stick with a cat on one edge. a magnet is attached and covered with cotton wool on top, and only cotton wool on the other end; animal figurines on cardboard stands; a shoe box with one side cut off; paper clips; a magnet attached with tape to a pencil; a glass of water, small metal rods or a needle.

Description. The children are greeted by a magician and shown the “picky goose” trick.
Magician: Many people think the goose is a stupid bird. But that's not true. Even a little gosling understands what is good and what is bad for him. At least this baby. He had just hatched from the egg, but he had already reached the water and swam. This means that he understands that walking will be difficult for him, but swimming will be easy. And he knows about food. Here I have two cotton wool tied, dip it in mustard and offer the gosling to taste it (a stick without a magnet is brought up) Eat, little one! Look, he turns away. What does mustard taste like? Why doesn't the goose want to eat? Now let’s try dipping another cotton ball into the jam (a stick with a magnet is brought up). Aha, I reached for the sweet one. Not a stupid bird
Why does our little gosling reach for jam with its beak, but turns away from mustard? What is his secret? Children look at a stick with a magnet at the end. Why did the goose interact with the magnet? (There is something metallic in the goose.) They examine the goose and see that there is a metal rod in its beak.
The magician shows the children pictures of animals and asks: “Can my animals move on their own?” (No.) The magician replaces these animals with pictures with paper clips attached to their bottom edges. Places the figures on the box and moves the magnet inside the box. Why did the animals start moving? Children look at the figures and see that there are paper clips attached to the stands. Children try to control animals. A magician “accidentally” drops a needle into a glass of water. How to get it out without getting your hands wet? (Bring the magnet to the glass.)
The children get the various things themselves. objects made from water with pom. magnet.

24. Sunny bunnies
Objectives: understand the reason for the appearance of sunbeams, teach how to let in sunbeams (reflect light with a mirror).

Material: mirrors.

Description. Grandfather Know helps children remember a poem about a sunny bunny. When does it work? (In the light, from objects that reflect light.) Then he shows how a sunbeam appears with the help of a mirror. (The mirror reflects a ray of light and itself becomes a source of light.) Invites children to make sunbeams (to do this, you need to catch a ray of light with a mirror and direct it in the right direction), hide them (covering them with your palm).
Games with a sunny bunny: chase, catch, hide it.
Children find out that playing with a bunny is difficult: a small movement of the mirror causes it to move a long distance.
Children are invited to play with the bunny in a dimly lit room. Why doesn't the sunbeam appear? (No bright light.)

25. What is reflected in the mirror?
Objectives: introduce children to the concept of “reflection”, find objects that can reflect.

Materials: mirrors, spoons, glass bowl, aluminum foil, new balloon, frying pan, working PITS.

Description. An inquisitive monkey invites children to look in the mirror. Who do you see? Look in the mirror and tell me what is behind you? left? on right? Now look at these objects without a mirror and tell me, are they different from those you saw in the mirror? (No, they are the same.) The image in the mirror is called reflection. A mirror reflects an object as it really is.
In front of the children are various objects (spoons, foil, frying pan, vases, balloon). The monkey asks them to find everything
objects in which you can see your face. What did you pay attention to when choosing a subject? Try the object to the touch, is it smooth or rough? Are all objects shiny? See if your reflection is the same on all these objects? Is it always the same shape! do you get a better reflection? The best reflection is obtained in flat, shiny and smooth objects, from which good mirrors. Next, children are asked to remember where on the street they can see their reflection. (In a puddle, in a store window.)
In the worksheets, children complete the task “Find all the objects in which you can see a reflection.

26. What dissolves in water?
Task: show children the solubility and insolubility of various substances in water.

Materials: flour, granulated sugar, river sand, food coloring, washing powder, glasses with clean water, spoons or chopsticks, trays, pictures depicting the presented substances.
Description. In front of the children on trays are glasses of water, chopsticks, spoons and substances in various containers. Children look at water and remember its properties. What do you think will happen if granulated sugar is added to water? Grandfather Know adds sugar, mixes, and everyone observes together what has changed. What happens if we add river sand to the water? Adds river sand to the water and mixes. Has the water changed? Did it become cloudy or remain clear? Has the river sand dissolved?
What will happen to water if we add food coloring to it? Adds paint and mixes. What changed? (The water has changed color.) Has the paint dissolved? (The paint dissolved and changed the color of the water, the water became opaque.)
Will flour dissolve in water? Children add flour to the water and mix. What did the water become? Cloudy or clear? Has the flour dissolved in the water?
Will washing powder dissolve in water? Add washing powder and mix. Did the powder dissolve in water? What did you notice that was unusual? Dip your fingers into the mixture and check if it still feels the same as clean water? (The water has become soapy.) What substances have dissolved in our water? What substances do not dissolve in water?

27. Magic sieve
Objectives: to introduce children to the method of separating k; coves from sand, small grains from large grains, with the help of developing independence.

Materials: scoops, various sieves, buckets, bowls, semolina and rice, sand, small pebbles.

Description. Little Red Riding Hood comes to the children and tells them that she is going to visit her grandmother - to take her a mountain of semolina porridge. But she had a misfortune. She did not drop the cans of cereal, and the cereal was all mixed up. (shows a bowl of cereal.) How to separate rice from semolina?
Children try to separate with their fingers. They note that it turns out slowly. How can you do this faster? Look
Are there any items in the laboratory that can help us? We notice that there is a sieve next to Grandfather Knowing? Why is it necessary? How to use it? What pours out of the sieve into the bowl?
Little Red Riding Hood examines the peeled semolina, thanks for the help, and asks: “What else can you call this magic sieve?”
We'll find substances in our laboratory that we can sift through. We find that there are a lot of pebbles in the sand. How can we separate the sand from the pebbles? Children sift the sand themselves. What's in our bowl? What's left. Why do large substances remain in the sieve, while small substances immediately fall into the bowl? Why is a sieve needed? Do you have a sieve at home? How do mothers and grandmothers use it? Children give a magic sieve to Little Red Riding Hood.

28. Colored sand
Objectives: introduce children to the method of making colored sand (mixed with colored chalk); teach how to use a grater.
Materials: colored crayons, sand, transparent container, small objects, 2 bags, fine graters, bowls, spoons (sticks,) small jars with lids.

Description. The little jackdaw, Curiosity, flew to the children. He asks the children to guess what he has in his bags. The children try to determine by touch. (In one bag there is sand, in the other there are pieces of chalk.) The teacher opens the bags, the children check their guesses. The teacher and the children examine the contents of the bags. What is this? What kind of sand, what can you do with it? What color is chalk? What does it feel like? Can it be broken? What is it for? Little Gal asks: “Can sand be colored? How to make it colored? What happens if we mix sand with chalk? How can you make chalk as free-flowing as sand?” Little Gal boasts that he has a tool for turning chalk into fine powder.
Shows the children a grater. What is this? How to use it? Children, following the example of the little jackdaw, take bowls, graters and rub chalk. What happened? What color is your powder? (The little pebble asks each child) How can I make the sand colored now? Children pour sand into a bowl and mix it with spoons or chopsticks. Children look at colored sand. How can we use this sand? (make beautiful pictures.) The little pebble offers to play. Shows a transparent container filled with multi-colored layers of sand and asks the children: “How can you quickly find a hidden object?” Children offer their own options. The teacher explains that you cannot mix sand with your hands, a stick or a spoon, and shows how to push it out of the sand

29. Fountains
Objectives: develop curiosity, independence, create a joyful mood.

Materials: plastic bottles, nails, matches, water.

Description. Children go for a walk. Parsley brings the children pictures of different fountains. What is a fountain? Where have you seen fountains? Why do people install fountains in cities? Is it possible to make a fountain yourself? What can it be made from? The teacher draws the children's attention to the bottles, nails, and matches brought by Parsley. Is it possible to make a fountain using these materials? What's the best way to do this?
Children poke holes in the bottles with a nail, plug them with matches, fill the bottles with water, pull out the matches, and it turns out to be a fountain. How did we get the fountain? Why doesn't water pour out when there are matches in the holes? Children play with fountains.
object by shaking the vessel.
What happened to the colorful sand? The children note that in this way we quickly found the object and mixed the sand.
Children hide small objects in transparent jars, cover them with layers of multi-colored sand, close the jars with lids and show the little girl how they quickly find the hidden object and mix the sand. Little Galchon gives the children a box of colored chalk as a farewell gift.

30. Playing with sand
Objectives: to consolidate children’s ideas about the properties of sand, to develop curiosity and observation, to activate children’s speech, and to develop constructive skills.

Materials: a large children's sandbox, in which traces of plastic animals are left, animal toys, scoops, children's rakes, watering cans, a plan of the area for walks of this group.

Description. Children go outside and explore the walking area. The teacher draws their attention to unusual footprints in the sandbox. Why are footprints so clearly visible in the sand? Whose tracks are these? Why do you think so?
Children find plastic animals and test their guesses: they take toys, place their paws on the sand and look for the same print. What trace will be left from the palm? Children leave their marks. Whose palm is bigger? Whose is smaller? Check by applying.
The teacher finds a letter in the bear cub's paws and takes out a site plan from it. What is shown? Which place is circled in red? (Sandbox.) What else could be interesting there? Perhaps some kind of surprise? Children, plunging their hands into the sand, look for toys. Who is this?
Each animal has its own home. The fox has... (hole), the bear has... (den), the dog has... (kennel). Let's build a sand house for each animal. What sand is best for building with? How to make it wet?
Children take watering cans and water the sand. Where does the water go? Why did the sand become wet? Children build houses and play with animals.

Your baby has already grown up. He is over 4 years old. you dealt with him early development and taught the most basic and important skills: walking, dressing, communicating with peers, distinguishing colors and shapes. Now your child is a completely independent, mature person and can not be distracted for 5-10 minutes while completing the task you propose. If you have a question “how to develop a hyperactive child.”

Our answer: Continue to develop perseverance.

If you have already sent your child to kindergarten, then your he/she will receive the knowledge, skills and abilities necessary for entering school. Just don’t rule out home education and development. Your journey together into the land of simple children's tricks, experiences and experiments is only just beginning to unfold. The time has come to become more deeply acquainted with the unknown world around us. Take a different look at the house and the objects in it, the nature outside the window, at things that are already familiar to you. Continue to communicate with your child and spend time together. Organize interesting experiments, experiments and tricks for children at home.

Let's experiment. Let's take simple, familiar objects and see what else they can do. Don’t rush to get the multi-volume “Big Soviet Encyclopedia" It contains a lot of useful and interesting things, but you will need it much later. In this section of the educational website for children, you will find an excellent collection of educational games and entertaining development games. The proposed experiments will interest both boys and girls. And you already have everything you need to organize a “home laboratory”. Look in the kitchen, bathroom and other rooms. Found it?

Then think, what element do you want to study today? What experiments will you conduct in your home laboratory? Choose from the list and get started.

Experiments for children

  • Experiments with water/density
  • Experiments with sand / sugar / salt / starch
  • Experiments with light / mirrors / candle / color
  • Experiments with equilibrium / electricity / thermal conductivity

I have an interesting offer for you. I want to give you a gift. Very useful for you, your child and your whole family. They say that best gift- this is a book. And today I want to give you two wonderful collections. This step by step instructions on how to set up your own home laboratory at home. This book contains amazing experiences with water for you. And you will find the answer to the question of how to tame sound. And if there are a lot of sounds in your house, then it’s time for you to master these entertaining experiments.

With the help of entertaining experiments, you will introduce your child to the four main elements: water, air, fire and earth (its gifts). Give your child a lot of positive emotions. Teach your child to observe, analyze, draw conclusions, and express his thoughts. Our goal is not to raise a young chemist or physicist. We want to make your child's childhood interesting, happy, fun, and as educational as possible. Prepare him for further education at school. Make sure that this training is easy for him. Arouse interest in learning, develop curiosity and perseverance. It’s interesting to answer a million different questions that pop up in thousands of “PocheMuk”’s heads every day.

Follow our updates

Share your impressions of your joint experiences in the comments.

Olga Guzhova

Experiments for children preparatory group in kindergarten

IN preparatory group conducting experiments should become the norm; they should be considered not as entertainment, but as a way of learning children with the outside world and most effective way development of thought processes. Experiments allow you to combine all types of activities and all aspects of education, develop observation and inquisitiveness of the mind, develop the desire to understand the world, all cognitive abilities, the ability to invent, use non-standard solutions in difficult situations, and create a creative personality.

Some important tips:

1. Conduct experiments are better in the morning when the child is full of strength and energy;

2. It is important for us not only to teach, but also interest the child, make him want to gain knowledge and create new ones himself experiments.

3. Explain to your child that you cannot taste unknown substances, no matter how beautiful and appetizing they look;

4. Don't just show it to your child. interesting experience, but also explain in a language accessible to him why this is happening;

5. Do not ignore your child’s questions - look for answers to them in books, reference books, Internet;

6. Where there is no danger, give the child more independence;

7. Invite your child to show his favorites experiments for friends;

8. And most importantly: Rejoice at your child’s successes, praise him and encourage his desire to learn. Only positive emotions can instill a love for new knowledge.

Experience No. 1. "Vanishing Chalk"

For spectacular experience We will need a small piece of chalk. Dip chalk into a glass of vinegar and see what happens. The chalk in the glass will begin to hiss, bubble, decrease in size and soon disappear completely.

Chalk is limestone; when it comes into contact with acetic acid, it turns into other substances, one of which is carbon dioxide, which is rapidly released in the form of bubbles.

Experience No. 2. "Erupting Volcano"

Necessary equipment:

Volcano:

Make a cone from plasticine (you can take plasticine that has already been used once)

Soda, 2 tbsp. spoons

Lava:

1. Vinegar 1/3 cup

2. Red paint, drop

3. A drop of liquid detergent to make the volcano foam better;

Experience No. 3. "Lava - lamp"


Needed: Salt, water, a glass of vegetable oil, several food colors, a large transparent glass.

Experience: Fill the glass 2/3 with water, pour into the water vegetable oil. Oil will float on the surface. Add food coloring to water and oil. Then slowly add 1 teaspoon of salt.

Explanation: Oil is lighter than water, so it floats on the surface, but salt is heavier than oil, so when you add salt to a glass, the oil and salt begin to sink to the bottom. As the salt breaks down, it releases oil particles and they rise to the surface. Food coloring will help make experience more visual and spectacular.

Experience No. 4. "Rain Clouds"


Children will love this simple activity that teaches them how to it's raining (schematically, of course): Water first accumulates in the clouds and then spills onto the ground. This " experience" can be done in a science lesson, in a kindergarten, in an older group, and at home with children of all ages - it enchants everyone, and children ask to repeat it again and again. So, stock up on shaving foam.

Fill the jar with water about 2/3 full. Squeeze the foam directly on top of the water until it looks like a cumulus cloud. Now pipette onto the foam (or better yet, entrust this to a child) colored water. And now all that remains is to watch how the colored water passes through the cloud and continues its journey to the bottom of the jar.

Experience No. 5. "Red Head Chemistry"


Place finely chopped cabbage in a glass and pour boiling water over it for 5 minutes. Strain the cabbage infusion through a cloth.

Pour cold water into the other three glasses. Add a little vinegar to one glass, a little soda to the other. Add the cabbage solution to a glass with vinegar - the water will turn red, add it to a glass of soda - the water will turn blue. Add the solution to a glass of clean water - the water will remain dark blue.

Experience No. 6. "Blow up the balloon"


Pour water into a bottle and dissolve a teaspoon of baking soda in it.

2. In a separate glass, mix lemon juice with vinegar and pour into a bottle.

3. Quickly place the balloon on the neck of the bottle, securing it with electrical tape. The ball will inflate. Baking soda and lemon juice mixed with vinegar react to release carbon dioxide, which inflates the balloon.

Experience No. 7. "Colored milk"


Needed: Whole milk, food coloring, liquid detergent, cotton swabs, plate.

Experience: Pour milk into a plate, add a few drops of different food colors. Then you need to take a cotton swab, dip it in the detergent and touch the swab to the very center of the plate with milk. The milk will begin to move and the colors will begin to mix.

Explanation: Detergent reacts with fat molecules in milk and sets them in motion. That's why for experience Skim milk is not suitable.