Периметр треугольника с разными сторонами. Находим периметр треугольника различными способами. Периметр треугольника, который имеет две равные стороны

Любого треугольника равен сумме длин трёх его сторон. Общая формула для нахождения периметра треугольников:

P = a + b + c

где P - это периметр треугольника, a , b и c - его стороны.

Можно найти сложив последовательно длины его сторон или умножив длину боковой стороны на 2 и прибавив к произведению длину основания. Общая формула для нахождения периметра равнобедренных треугольников будет выглядеть так:

P = 2a + b

где P - это периметр равнобедренного треугольника, a - любая из боковых сторон, b - основание.

Можно найти сложив последовательно длины его сторон или умножив длину любой его стороны на 3. Общая формула для нахождения периметра равносторонних треугольников будет выглядеть так:

P = 3a

где P - это периметр равностороннего треугольника, a - любая из его сторон.

Площадь

Для измерения площади треугольника можно сравнить его с параллелограммом . Рассмотрим треугольник ABC :

Если взять равный ему треугольник и приставить его так, чтобы получился параллелограмм, то получится параллелограмм с той же высотой и основанием, что и у данного треугольника:

В данном случае общая сторона сложенных вместе треугольников является диагональю образованного параллелограмма. Из свойства параллелограммов известно, что диагональ всегда делит параллелограмм на два равных треугольника, значит площадь каждого треугольника равна половине площади параллелограмма.

Так как площадь параллелограмма равна произведению его основания на высоту, то площадь треугольника будет равна половине этого произведения. Значит для ΔABC площадь будет равна

Теперь рассмотрим прямоугольный треугольник:

Два равных прямоугольных треугольника можно сложить в прямоугольник, если прислонить их друг к другу гипотенузой. Так как площадь прямоугольника равна произведению его смежных сторон, то площадь данного треугольника равна:

Из это можно сделать вывод, что площадь любого прямоугольного треугольника равна произведению катетов, разделённому на 2.

Из данных примеров можно сделать вывод, что площадь любого треугольника равна произведению длин основания и высоты, опущенной на основание, разделённому на 2 . Общая формула для нахождения площади треугольников будет выглядеть так:

S = ah a
2

где S - это площадь треугольника, a - его основание, h a - высота, опущенная на основание a .

Как найти периметр треугольника? Таким вопросом задавался каждый из нас, учась в школе. Попробуем вспомнить все, что мы знаем об этой удивительной фигуре, а также ответить на заданный вопрос.

Ответ на вопрос о том, как найти периметр треугольника, обычно является довольно-таки простым - требуется всего-лишь выполнить процедуру сложения длин всех его сторон. Однако есть ещё несколько простых методов искомой величины.

Советы

В том случае, если радиус (r) окружности, которая вписана в треугольник, и его площадь (S) известны, то ответить на вопрос о том, как найти периметр треугольника, довольно просто. Для этого вам необходимо воспользоваться обычной формулой:

Если известны два угла, допустим, α и β, которые прилегают к стороне, и сама длина стороны, то периметр можно найти с помощью весьма и весьма популярной формулы, которая имеет вид:

sinβ∙а/(sin(180° - β - α)) + sinα∙а/(sin(180° - β - α)) + а

Если вы знаете длины смежных сторон и угол β, находящийся между ними, то для того, чтобы найти периметр, требуется воспользоваться Периметр вычисляется по формуле:

P = b + a + √(b2 + a2 - 2∙b∙а∙cosβ),

где b2 и а2 являются квадратами длин смежных сторон. Подкоренное выражение - это длина третьей стороны, которая неизвестна, выраженная посредством теоремы косинусов.

Если вы не знаете, как найти периметр то здесь, на самом деле, нет ничего сложного. Вычислите его по формуле:

где b - основание треугольника, а - его боковые стороны.

Для нахождения периметра правильного треугольника следует воспользоваться простейшей формулой:

где а - длина стороны.

Как найти периметр треугольника, если известны только радиусы окружностей, которые описаны около него или вписаны в него? Если треугольник является равносторонним, то тогда следует применить формулу:

P = 3R√3 = 6r√3,

где R и r являются радиусами описанной и вписанной окружности соответственно.

Если треугольник является равнобедренным, то для него применима формула:

P=2R (sinβ + 2sinα),

где α - это угол, который лежит у основания, а β - угол, который противолежит основанию.

Зачастую для решения математических задач требуется глубочайший анализ и специфическое умение находить и выводить требуемые формулы, а это, как многим известно, довольно непростая работа. Хотя некоторые задачи можно решить всего лишь с помощью одной-единственной формулы.

Давайте рассмотрим формулы, которые являются базовыми для ответа на вопрос о том, как найти периметр треугольника, по отношению к самым разнообразным типам треугольников.

Безусловно, главное правило для нахождения периметра треугольника - это данное утверждение: для нахождения периметра треугольника требуется сложить длины всех его сторон по соответствующей формуле:

где b, a и с - это длины сторон треугольника, а Р - периметр треугольника.

Есть несколько частных случаев данной формулы. Допустим, ваша задача формулируется следующим образом: «как найти периметр прямоугольного треугольника?» В таком случае вам следует воспользоваться следующей формулой:

P = b + a + √(b2 + a2)

В этой формуле b и а являются непосредственными длинами катетов прямоугольного треугольника. Несложно догадаться, что вместо стороны с (гипотенузы) используется выражение, полученное по теореме великого ученного древности - Пифагора.

Если требуется решить задачу, где треугольники являются подобными, то логично было бы воспользоваться данным утверждением: отношение периметров соответствует коэффициенту подобия. Допустим, у вас есть два подобных треугольника - ΔABC и ΔA1B1C1. Тогда для нахождения коэффициента подобия необходимо разделить периметр ΔABC на периметр ΔA1B1C1.

В заключение можно отметить, что периметр треугольника можно найти при помощи самых различных методик, в зависимости от тех исходных данных, которые у вас имеются. Необходимо добавить, что существуют некоторые частные случаи для прямоугольных треугольников.

Определение треугольника

Треугольник - это геометрическая фигура, состоящая из трех точек, последовательно соединенных между собой.

Треугольник имеет три стороны и три угла.

Существует множество видов треугольников, и все они обладают разными свойствами. Перечислим основные виды треугольников:

  1. Разносторонний (все стороны разной длины);
  2. Равнобедренный (две стороны равны, два угла при основании равны);
  3. Равносторонний (все стороны и все углы равны).

Однако для всех видов треугольников действует одна универсальная формула нахождения периметра треугольника – это сумма длин всех сторон треугольника.

Онлайн-калькулятор

Формула периметра треугольника

P = a + b + c P = a + b + c P = a + b + c

A , b , c a, b, c a , b , c - длины сторон треугольника.

Разберем задачи на нахождение периметра треугольника.

Задача

Треугольник имеет стороны: a = 28 см, b = 46 см, c = 51 см. Чему равен периметр треугольника?

Решение
Воспользуемся формулой нахождения периметра треугольника и подставим вместо a a a , b b b и c c c их численные значения:
P = a + b + c P = a + b + c P = a + b + c
P = 28 + 46 + 51 = 125 см P = 28 + 46 + 51 = 125\text{ см} P = 2 8 + 4 6 + 5 1 = 1 2 5 см

Ответ:
P = 125 см. P = 125 \text{ см.} P = 1 2 5 см .

Задача

Треугольник является равносторонним со стороной 23 см. Чему равен периметр треугольника?

Решение

P = a + b + c P = a + b + c P = a + b + c

Но по условию у нас равносторонний треугольник, то есть все стороны у него равны. В этом случае формула примет следующий вид:

P = a + a + a = 3 a P = a + a + a = 3a P = a + a + a = 3 a

Подставляем в формулу численное значение и находим периметр треугольника:

P = 3 ⋅ 23 = 69 см P = 3\cdot23 = 69\text{ см} P = 3 ⋅ 2 3 = 6 9 см

Ответ
P = 69 см. P = 69 \text{ см.} P = 6 9 см .

Задача

В равнобедренном треугольнике боковая сторона b равна 14 см, а основание a – 9 см. Найти периметр треугольника.

Решение
Воспользуемся формулой нахождения периметра треугольника:

P = a + b + c P = a + b + c P = a + b + c

Но по условию у нас равнобедренный треугольник, то есть боковые стороны у него равны. В этом случае формула примет следующий вид:

P = a + b + b = 2 b + a P = a + b + b = 2b + a P = a + b + b = 2 b + a

Подставляем в формулу численные значения и находим периметр треугольника:

P = 2 ⋅ 14 + 9 = 28 + 9 = 37 см P = 2 \cdot 14 + 9 = 28 + 9 = 37 \text{ см} P = 2 ⋅ 1 4 + 9 = 2 8 + 9 = 3 7 см

Ответ
P = 37 см. P = 37\text{ см.} P = 3 7 см .

Периметр — это величина, подразумевающая длину всех сторон плоской (двумерной) геометрической фигуры. Для разных геометрических фигур существуют разные способы нахождения периметра.

В данной статье вы узнаете как находить периметр фигуры разными способами, в зависимости от известных его граней.

Вконтакте

Возможные методы:

  • известны все три стороны равнобедренного или любого другого треугольника;
  • как найти периметр прямоугольного треугольника при двух известных его гранях;
  • известны две грани и угол, который расположен между ними (формула косинусов) без средней линии и высоты.

Первый метод: известны все стороны фигуры

Как находить периметра треугольника, когда известны все три грани , необходимо использовать следующую формулу: P = a + b + c, где a,b,c — известные длины всех сторон треугольника, P — периметр фигуры.

Например, известны три стороны фигуры: a = 24 см, b = 24 см, c = 24 см. Это правильная равнобедренная фигура, чтобы вычислить периметр пользуемся формулой: P = 24 + 24 + 24 = 72 см.

Данная формула подходит к любому треугольнику , необходимо просто знать длины всех его сторон. Если хотя бы одна из них неизвестна, необходимо воспользоваться другими способами, о которых мы поговорим ниже.

Еще один пример: a = 15 см, б = 13 см, c = 17 см. Вычисляем периметр: P = 15 + 13 + 17 = 45 см.

Очень важно помечать единицу измерения в полученном ответе. В наших примерах длины сторон указаны в сантиметрах (см), однако, существуют разные задачи, в условиях которых присутствуют другие единицы измерения.

Второй метод: прямоугольный треугольник и две известные его стороны

В том случае, когда в задании, которое нужно решить, дана прямоугольная фигура, длины двух граней которой известны, а третья нет, необходимо воспользоваться теоремой Пифагора.

Описывает соотношение между гранями прямоугольного треугольника. Формула, описываемая этой теоремой, является одной из самых известных и наиболее часто применяемых теорем в геометрии. Итак, сама теорема:

Стороны любого прямоугольного треугольника описываются таким уравнением: a^2 + b^2 = c^2, где а и b — катеты фигуры, а c — гипотенуза.

  • Гипотенуза . Она всегда расположена противоположно прямому углу (90 градусов), а также является самой длинной гранью треугольника. В математике принято обозначать гипотенузу буквой c.
  • Катеты — это грани прямоугольного треугольника, которые относятся к прямому углу и обозначаются буквами а и b. Один из катетов одновременно является и высотой фигуры.

Таким образом, если условиями задачи заданы длины двух из трех граней такой геометрической фигуры, с помощью теоремы Пифагора необходима найти размерность третьей грани, после чего воспользоваться формулой из первого метода.

Например, мы знаем длину 2-х катетов: a = 3 см, b = 5 см. Подставляем значения в теорему: 3^2 + 4^2 = c^2 => 9 + 16 = c^2 => 25 = c^2 => c = 5 см. Итак, гипотенуза такого треугольника равна 5 см. К слову, данный пример является самым распространенным и называется . Иными словами, если два катета фигуры равны 3 см и 4 см, то гипотенуза составит 5 см соответственно.

Если неизвестна длина одного из катетов, необходимо преобразовать формулу следующим образом: c^2 — a^2 = b^2. И наоборот для другого катета.

Продолжим пример. Теперь необходимо обратиться к стандартной формуле поиска периметра фигуры: P = a + b + c. В нашем случае: P = 3 + 4 + 5 = 12 см.

Третий метод: по двум граням и углу между ними

В старшей школе, а также университете, чаще всего приходится обращаться именно к данному способу нахождения периметра. Если условиями задачи заданы длины двух сторон, а также размерность угла между ними, то необходимо воспользоваться теоремой косинусов .

Данная теорема применима абсолютно к любому треугольнику, что и делает ее одной из наиболее полезных в геометрии. Сама теорема выглядит следующим образом: c^2 = a^2 + b^2 — (2 * a * b * cos(C)), где a,b,c — стандартно длины граней, а A,B и С — это углы, которые лежат напротив соответствующих граней треугольника. То есть, A — угол, противолежащий стороне a и так далее.

Представим, что описан треугольник, стороны а и б которого составляют 100 см и 120 см соответственно, а угол, лежащий между ними, составляет 97 градусов. То есть а = 100 см, б = 120 см, C = 97 градусов.

Все, что нужно сделать в данном случае — это подставить все известные значения в теорему косинусов. Длины известных граней возводятся в квадрат, после чего известные стороны перемножаются между друг другом и на два и умножаются на косинус угла между ними. Далее, необходимо сложить квадраты граней и отнять от них второе полученное значение. Из итоговой величины извлекается квадратный корень — это будет третья, неизвестная до этого сторона.

После того как все три грани фигуры известны, осталось воспользоваться уже полюбившейся нам стандартной формулой поиска периметра описываемой фигуры из первого метода.

Предварительные сведения

Периметр любой плоской геометрической фигур на плоскости определяется как сумма длин всех его сторон. Исключением из этого не является и треугольник. Сначала приведем понятие треугольника, а также виды треугольников в зависимости от сторон.

Определение 1

Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками (рис. 1).

Определение 2

Точки в рамках определения 1 будем называть вершинами треугольника.

Определение 3

Отрезки в рамках определения 1 будем называть сторонами треугольника.

Очевидно, что любой треугольник будет иметь 3 вершины, а также три стороны.

В зависимости от отношении сторон друг к другу, треугольники делятся на разносторонние, равнобедренные и равносторонние.

Определение 4

Треугольник будем называть разносторонним, если ни одна из его сторон не равняется никакой другой.

Определение 5

Треугольник будем называть равнобедренным, если две его стороны равны друг другу, но не равняются третьей стороне.

Определение 6

Треугольник будем называть равносторонним, если все его стороны равняются друг другу.

Все виды этих треугольников Вы можете видеть на рисунке 2.

Как найти периметр разностороннего треугольника?

Пусть нам дан разносторонний треугольник, у которого длины сторон будут равняться $α$, $β$ и $γ$.

Вывод: Для нахождения периметра разностороннего треугольника надо все длин его сторон сложить между собой.

Пример 1

Найти периметр разностороннего треугольника равняются $34$ см, $12$ см и $11$ см.

$P=34+12+11=57$ см

Ответ: $57$ см.

Пример 2

Найти периметр прямоугольного треугольника, у которого катеты равняются $6$ и $8$ см.

Сначала найдем длину гипотенуз этого треугольника по теореме Пифагора. Обозначим ее через $α$, тогда

$α=10$ По правилу вычисления периметра разностороннего треугольника, получим

$P=10+8+6=24$ см

Ответ: $24$ см.

Как найти периметр равнобедренного треугольника?

Пусть нам дан равнобедренный треугольник, у которого длины боковых сторон будут равняться $α$, а длина основания равняется $β$.

По определению периметра плоской геометрической фигуры, получим, что

$P=α+α+β=2α+β$

Вывод: Для нахождения периметра равнобедренного треугольника надо удвоенную длину его сторон сложить с длиной его основания.

Пример 3

Найти периметр равнобедренного треугольника, если его боковые стороны равняются $12$ см, а основание $11$ см.

По рассмотренному выше примеру, видим, что

$P=2\cdot 12+11=35$ см

Ответ: $35$ см.

Пример 4

Найти периметр равнобедренного треугольника, если его высота, проведенная на основание, равняется $8$ см, а основание $12$ см.

Рассмотрим рисунок по условию задачи:

Так как треугольник равнобедренный, то $BD$ также является и медианой, следовательно, $AD=6$ см.

По теореме Пифагора, из треугольника $ADB$, найдем боковую сторону. Обозначим ее через $α$, тогда

По правилу вычисления периметра равнобедренного треугольника, получим

$P=2\cdot 10+12=32$ см

Ответ: $32$ см.

Как найти периметр равностороннего треугольника?

Пусть нам дан равносторонний треугольник, у которого длины всех сторон будут равняться $α$.

По определению периметра плоской геометрической фигуры, получим, что

$P=α+α+α=3α$

Вывод: Для нахождения периметра равностороннего треугольника надо длину стороны треугольника умножить на $3$.

Пример 5

Найти периметр равностороннего треугольника, если его сторона равняется $12$ см.

По рассмотренному выше примеру, видим, что

$P=3\cdot 12=36$ см