Зависимость электрического сопротивления от температуры. Т. Зависимость сопротивления от температуры. Зависимость удельного сопротивления проводника от температуры

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

  1. возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
  2. изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

где - удельные сопротивления вещества проводника соответственно при 0°С и t°C; R 0 , R t - сопротивления проводника при 0°С и t°С, - температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.

где - среднее значение температурного коэффициента сопротивления в интервале .

Для всех металлических проводников > 0 и слабо изменяется с изменением температуры. У чистых металлов = 1/273 К -1 . У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.

Для растворов электролитов 0, например, для 10%-ного раствора поваренной соли = -0,02 К -1 . Сопротивление электролитов с ростом температуры уменьшается, так как увеличение числа свободных ионов из-за диссоциации молекул превышает рост рассеивания ионов при столкновениях с молекулами растворителя.

Формулы зависимости и R от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором = const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.

Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.

При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости. Металл переходит в сверхпроводящее состояние.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.

Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Одна из характеристик любого проводящего электрический ток материала - это зависимость сопротивления от температуры. Если ее изобразить в виде графика на где по горизонтальной оси отмечаются промежутки времени (t), а по вертикальной - значение омического сопротивления (R), то получится ломаная линия. Зависимость сопротивления от температуры схематично состоит из трех участков. Первый соответствует небольшому нагреву - в этом время сопротивление изменяется очень незначительно. Так происходит до определенного момента, после которого линия на графике резко идет вверх - это второй участок. Третья, последняя составляющая - это прямая, уходящая вверх от точки, на которой остановился рост R, под относительно небольшим углом к горизонтальной оси.

Физический смысл данного графика следующий: зависимость сопротивления от температуры у проводника описывается простым до тех пор, пока величина нагрева не превысит какое-то значение, характерное именно для данного материала. Приведем абстрактный пример: если при температуре +10°C сопротивление вещества составляет 10 Ом, то до 40°C значение R практически не изменится, оставаясь в пределах погрешности измерений. Но уже при 41°C возникнет скачок сопротивления до 70 Ом. Если же дальнейший рост температуры не прекратится, то на каждый последующий градус придутся дополнительные 5 Ом.

Данное свойство широко используется в различных электротехнических устройствах, поэтому закономерно привести данные по меди как одному из самых распространенных материалов в Так, для медного проводника нагрев на каждый дополнительный градус приводит к росту сопротивления на полпроцента от удельного значения (можно найти в справочных таблицах, приводится для 20°C, 1 м длины сечением 1 кв.мм).

При возникновении в металлическом проводнике появляется электрический ток - направленное перемещение элементарных частиц, обладающих зарядом. Ионы, находящиеся в узлах металла, не в состоянии долго удерживать электроны на своих внешних орбитах, поэтому они свободно перемещаются по всему объему материала от одного узла к другому. Это хаотичное движение обусловлено внешней энергией - теплом.

Хотя факт перемещения налицо, оно не является направленным, поэтому не рассматривается в качестве тока. При появлении электрического поля электроны ориентируются в соответствии с его конфигурацией, формируя направленное движение. Но так как тепловое воздействие никуда не исчезло, то хаотично перемещающиеся частицы сталкиваются с направленными полем. Зависимость сопротивления металлов от температуры показывает величину помех прохождению тока. Чем больше температура, тем выше R проводника.

Очевидный вывод: снижая степень нагрева, можно уменьшить и сопротивление. (около 20°K) как раз и характеризуется существенным снижением теплового хаотичного движения частиц в структуре вещества.

Рассматриваемое свойство проводящих материалов нашло широкое применение в электротехнике. Например, зависимость сопротивления проводника от температуры используется в электронных датчиках. Зная ее значение для какого-либо материала, можно изготовить терморезистор, подключить его к цифровому или аналоговому считывающему устройству, выполнить соответствующую градуировку шкалы и использовать в качестве альтернативы В основе большинства современных термодатчиков заложен именно такой принцип, ведь надежность выше, а конструкция проще.

Кроме того, зависимость сопротивления от температуры дает возможность рассчитывать нагрев обмоток электродвигателей.

Термосопротивление, термистор или терморезистор – это три названия одного и того же прибора, сопротивление которого меняется в зависимости от его нагрева или охлаждения.

Достоинства терморезистора:

  • простота изготовления;
  • отличная работоспособность при больших нагрузках;
  • стабильная работа;
  • небольшие размеры изделия позволяют использовать его в миниатюрных датчиках;
  • малая тепловая инертность.

Типы термисторов и принцип их действия

Основой датчика является резистивный элемент, для изготовления которого используют полупроводники, металлы или сплавы, то есть элементы, у которых наблюдается выраженная зависимость сопротивления от температуры. Все материалы, которые используются при их создании, должны иметь высокий удельный температурный коэффициент сопротивления.

Для производства терморезисторов применяют следующие материалы и их оксиды:

  • платина;
  • никель;
  • медь;
  • марганец;
  • кобальт.

Также могут применяться галогениды и халькогениды определённых металлов.

Если используется металлический резистивный элемент, то он изготавливается в виде проволоки. Если полупроводниковый, то – чаще всего в виде пластинки.

Важно! Материалы, из которых изготавливается термосопротивление, должны обладать большим температурным отрицательным (NTC) или положительным (PTK) коэффициентом сопротивления.

Если коэффициент отрицательный, то при нагревании сопротивление термистора падает, если положительный – увеличивается.

Металлические терморезисторы

Ток в металлах образуется за счёт движения электронов. Их концентрация при нагреве не увеличивается, но возрастает скорость хаотического движения. Таким образом, при нагревании растёт величина удельного сопротивления проводника.

Зависимость сопротивления металлов от температуры нелинейная и имеет вид:

Rt = R0(1 + А·t + В·t2 + …), где:

  • Rt и R0 – сопротивление проводника при температуре t и 0°С соответственно,
  • A, B – коэффициенты, которые зависят от материала. Коэффициент А называют температурным коэффициентом.

Если температура не превышает 100°С, то сопротивление проводника рассчитывают по следующей формуле:

Rt = R0(1 + A·t),

а остальными коэффициентами пренебрегают.

У каждого типа термисторов есть определённые ограничения для использования. Так, например, медные датчики можно использовать в температурном диапазоне от -50°С до +180°С, платиновые – от -200 до +650°С, никелевые приборы – до 250-300°С.

Полупроводниковые термисторы

Для изготовления терморезисторов используются оксиды CuO, CoO, MnO и т.д. При изготовлении порошок спекают в деталь нужной формы. Чтобы в процессе работы резистивный элемент не был повреждён, его покрывают защитным слоем.

В полупроводниковых приборах зависимость удельного сопротивления от температурных показателей также не является линейной. При её повышении в датчике резко падает значение R из-за увеличения концентрации носителей электрического заряда (дырок и электронов). В этом случае говорят о датчиках с отрицательным температурным коэффициентом. Однако, имеются терморезисторы с положительным коэффициентом, которые при нагревании ведут себя как металлы, т.е. R увеличивается. Такие датчики называются позисторами (PTC датчики).

Формула зависимости сопротивления полупроводникового термистора от температуры имеет вид:

где:

  • A – постоянная, характеризующая сопротивление материала при t = 20°С;
  • T – абсолютная температура в гра­дусах Кельвина (T = t + 273);
  • B – постоянная, зависящая от физических свойств полупроводника.

Конструкция металлических терморезисторов

Существует два основных типа конструкции прибора:

  • намоточная;
  • тонкоплёточная.

В первом случае датчик выполняется в виде спирали. Проволоку либо наматывают на цилиндр, выполненный из стекла или керамики, либо размещают внутри него. Если намотка выполняется по цилиндру, то сверху она обязательно покрывается защитным слоем.

Во втором случае используют тонкую подложку из керамики, сапфира, оксида меди, циркония и т.д. На неё напыляется металл тонким слоем, который сверху дополнительно изолируется. Металлический слой выполняется в виде дорожки и называется меандр.

К сведению. Для защиты терморезистора его размещают в металлическом корпусе или сверху покрывают специальным изолирующим слоем.

Принципиальных различий в работе обоих видов датчиков нет, но плёночные приборы работают в более узком температурном диапазоне.

Сами приборы могут быть выполнены не только в виде стержней, но и бусинок, дисков и т.д.

Применение термисторов

Если термосопротивление разместить в какой-либо среде, то его температура будет зависеть от интенсивности теплообмена между ним и средой. Это зависит от ряда факторов: физических свойств среды (плотность, вязкость и т.д.), скорости движения среды, изначального соотношения температурных показателей среды и термистора и т.д.

Таким образом, зная зависимость сопротивления проводника от температуры, можно определять количественные показатели самой среды, например, скорость, температуру, плотность и т.д.

Одной из важных характеристик терморезистора является его точность измерения, то есть насколько реальные показания термистора отличаются от лабораторных. Точность прибора характеризуется классом допуска, который определяет величину максимального отклонения от заявленных показателей. Класс допуска задаётся как функция, зависящая от температуры. Например, значения допуска платиновых датчиков класса АА составляют ± (0,1 + 0,0017 |T|), класса А – ±(0,15 + 0,002 |T|).

Важно! Естественно, что при создании термосопротивления разработчики стремятся к тому, чтобы при работе минимизировать потери, связанные с теплопроводностью и лучеиспусканием самого прибора.

Термисторы нашли широкое применение в радиоэлектронике, системах теплового контроля, пожарных системах и т.д.

Видео

Существуют различные условия, при которых носители заряда проходят через определенные материалы. И на заряд электрического тока прямое влияние имеет сопротивление, у которого есть зависимость от окружающей среды. К факторам, которые изменяют протекание электротока, относится и температура. В этой статье мы рассмотрим зависимость сопротивления проводника от температуры.

Металлы

Как температура влияет на металлы? Чтобы узнать эту зависимость был проведен такой эксперимент: батарейку, амперметр, проволоку и горелку соединяют между собой с помощью проводов. Затем необходимо замерить показание тока в цепи. После того как показания были сняты, нужно горелку поднести к проволоке и нагреть ее. При нагревании проволоки видно, что сопротивление возрастает, а проводимость металла уменьшается.

  1. Металлическая проволока
  2. Батарея
  3. Амперметр

Зависимость указывается и обосновывается формулами:

Из этих формул следует, что R проводника определяется по формуле:

Пример зависимости сопротивления металлов от температуры предоставлен на видео:

Также нужно уделить внимание такому свойству, как сверхпроводимость. Если условия окружающей среды обычные, то охлаждаясь, проводники уменьшают свое сопротивление. График ниже показывает, как зависит температура и удельное сопротивление в ртути.

Сверхпроводимость – это явление, которое возникает, когда материалом достигается критическая температура (по Кельвину ближе к нулю), при которой сопротивление резко уменьшается до нуля.

Газы

Газы выполняют роль диэлектрика и не могут проводить электроток. А для того чтобы он сформировался необходимы носители зарядов. В их роли выступают ионы, и они возникают за счет влияния внешних факторов.

Зависимость можно рассмотреть на примере. Для опыта используется такая же конструкция, что и в предыдущем опыте, только проводники заменяются металлическими пластинами. Между ними должно быть небольшое пространство. Амперметр должен указывать на отсутствие тока. При помещении горелки между пластинами, прибор укажет ток, который проходит через газовую среду.

Ниже предоставлен график вольт-амперной характеристики газового разряда, где видно, что рост ионизации на первоначальном этапе возрастает, затем зависимость тока от напряжения остается неизменная (то есть при росте напряжения ток остается прежний) и резкий рост силы тока, который приводит к пробою диэлектрического слоя.

Рассмотрим проводимость газов на практике. Прохождение электрического тока в газах применяется в люминесцентных светильниках и лампах. В этом случае катод и анод, два электрода размещают в колбе, внутри которой есть инертный газ. Как зависит такое явление от газа? Когда лампа включается, две нити накала разогреваются, и создается термоэлектронная эмиссия. Внутри колба покрывается люминофором, который излучает свет, который мы видим. Как зависит ртуть от люминофора? Пары ртути при бомбардировании их электронами образуют инфракрасное излучение, которое в свою очередь излучает свет.

Если приложить напряжение между катодом и анодом, то возникает проводимость газов.

Жидкости

Проводники тока в жидкости – это анионы и катионы, которые движутся за счет электрического внешнего поля. Электроны обеспечивают незначительную проводимость. Рассмотрим зависимость сопротивления от температуры в жидкостях.

  1. Электролит
  2. Батарея
  3. Амперметр

Зависимость воздействия электролитов от нагревания прописывает формула:

Где а – отрицательный температурный коэффициент.

Как зависит R от нагрева (t) показано на графике ниже:

Такая зависимость должна учитываться, когда осуществляется зарядка аккумуляторов и батарей.

Полупроводники

А как зависит сопротивление от нагрева в полупроводниках? Для начала поговорим о терморезисторах. Это такие устройства, которые меняют свое электрическое сопротивление под воздействием тепла. У данного полупроводника температурный коэффициент сопротивления (ТКС) на порядок выше металлов. Как положительные, так и отрицательные проводники, они имеют определенные характеристики.

Где: 1 – это ТКС меньше нуля; 2 – ТКС больше нуля.

Чтобы такие проводники, как терморезисторы приступили к работе, за основу берут любую точку на ВАХ:

  • если температура элемента меньше нуля, то такие проводники используются в качестве реле;
  • чтобы контролировать изменяющийся ток, а также, какая температура и напряжение, используют линейный участок.

Терморезисторы применяются, когда осуществляется проверка и замер электромагнитных излучений, что осуществляются на сверхвысоких частотах. Благодаря этому данные проводники используют в таких системах, как пожарной сигнализации, проверке тепла и контроль употребления сыпучих сред и жидкостей. Те терморезисторы, у которых ТКС меньше нуля, применяются в системах охлаждения.

Теперь о термоэлементах. Как влияет явление Зеебека на термоэлементы? Зависимость заключается в том, что такие проводники функционируют на основе данного явления. Когда температура места соединения повышается при нагревании, на стыке замкнутой цепи появляется ЭДС. Таким образом, проявляется их зависимость и тепловая энергия обращается в электричество. Чтобы полностью понять процесс, рекомендую изучить нашу инструкцию о том,

При повышении температуры проводника увеличивается число столкновений свободных электронов с атомами. Следовательно, уменьшается средняя скорость направленного движения электронов, что соответствует увеличению сопротивления проводника.

С другой стороны, при повышении температуры возрастает число свободных электронов и ионов в единице объема проводника, что приводит к уменьшению сопротивления проводника.

В зависимости от преобладания того или иного фактора при повышении температуры сопротивление или увеличивается (металлы), или уменьшается (уголь, электролиты), или остается почти неизменным (сплавы металлов, например мангаиин).

При незначительных изменениях температуры (0-100°С) относительное приращение сопротивления соответствующее нагреванию на 1° С, называемое температурным коэффициентом сопротивления а, для большинства металлов остается постоянным.

Обозначив - сопротивления при температурах , можем написать выражение относительного приращения сопротивления при повышении температуры от до :

Значения температурного коэффициента сопротивления для различных материалов даны в табл. 2-2.

Из выражения (2-18) следует, что

Полученная формула (2-20) дает возможность определить температуру провода (обмотки), если измерить его сопротивление при заданных или известных величинах .

Пример 2-3. Определить сопротивление проводов воздушной липни при температурах если длина линии 400 м, а сечение медных проводов

Сопротивление проводов линии при температуре