Допуски и посадки. Основные определения. Валом и отверстием называют соединяемые поверхности деталей, причём вал – это наружная поверхность, а отверстие – внутренняя поверхность деталей Валы и отверстия

Совокупность разных точностей и различных отклонений для образования разнообразных посадок и их построение называется системой допусков.

Система допусков подразделяется на систему отверстия и систему вала .

Рис. 95. Посадки в системе отверстий (а) и в системе вала (б) :

1 — ходовая; 2 — скольжения; 3 — прессовая

Система отверстия — это совокупность посадок, в которых при одном классе точности и одном номинальном размере предельные размеры отверстия остаются постоянными, а различные посадки достигаются путем изменения предельных отклонений валов (рис. 95, а). Во всех стандартных посадках системы отверстия нижнее отклонение отверстия равно нулю. Такое отверстие называется основным.

Система вала — это совокупность посадок, в которых предельные отклонения вала одинаковы (при одном номинальном размере и одном классе точности), а различные посадки достигаются путем изменения предельных отношений отверстия (рис. 95, б). Во всех стандартных посадках системы вала верхнее отклонение вала равно нулю. Такой вал называется основным.

Поля допусков основных отверстий обозначаются буквой А, а основных валов — буквой В с числовым индексом класса точности (для 2-го класса точности индекс 2 не указывается): А 1 , А, А 2а,А 3а, А 4 и А 5 , В 1 В 2 , В 2а, В 3 , В 3а, В 4 , В 5 . Общесоюзными стандартами установлены допуски и посадки гладких соединений.

Допускается пользоваться не только посадками, установленными стандартом, но и комбинациями стандартизованных полей допусков отверстий и валов одного или разных классов точности.

Для предпочтительного применения при номинальных размерах 1 + 500 мм установлены два ряда полей допусков отверстий и валов. В первую очередь должны применяться поля допусков 1-го ряда, затем поля допусков 2-го ряда. Только в особых случаях, при необходимости, могут применяться остальные поля допусков.

К первому ряду 2-го класса точности относятся поля допусков посадок Н, С, Х, а ко второму ряду — Пр, Г, П, Д и Л. Путем длительных наблюдений установлена зависимость изменения допуска от размеров обрабатываемых поверхностей. Эта зависимость выражается в виде кубической параболы . Сравнение допусков при разных размерах поверхности и одинаковой точности производят, используя единицу допуска. Число этих единиц, заключенных в величине допуска на обработку поверхности, характеризует степень точности обработки. Для каждого класса точности предусмотрено определенное число единиц допуска. Величина допуска равна ai, где а — число единиц допуска, i — величина единицы допуска.

По ГОСТу единица допуска i в мк выражается следующими зависимостями:

для отверстия диаметром 0,1—1 мм

для отверстий диаметром 1—500 мм

для отверстий диаметром 500—10 000 мм

где d c.a есть среднее арифметическое значение интервалов диаметров в мм. На чертежах отклонения указывают одним из двух способов:

1) указывается размер и буквенное обозначение посадки, например, при скользящей посадке 2-го класса точности для отверстия системы вала диаметром 30 мм посадка обозначается 30С, для ходовой посадки 3-го класса — 30Х 3 ; размер основного вала обозначается 30В для первого случая и 30В 3 — для второго; при системе отверстия основное отверстие будет обозначено 30А и 30А 3 , а на размерах вала соответственно будут указаны посадки;

2) указывается размер и численные значения допустимых отклонений в миллиметрах, например, для отверстия диаметром 30 мм в системе вала при скользящей посадке 2-го класса точности пишется Ø30 +0,027 ; для ходовой посадки 3-го класса точности пишется 30 +0,05 ; размер основного вала будет обозначен Ø 50 -0,017 .

При системе отверстия размер основного отверстия 2-го класса будет Ø 30 +0,027 , а для третьего класса Ø 30 +0,05 . Для скользящей посадки 2-го класса точности в системе отверстия размер вала будет Ø 30 -0,017 , а для ходовой посадки 3-го класса Ø 30 -0,05 .

Во всех случаях численные значения верхних отклонений указывают выше стрелки размера, а нижнее отклонение — ниже нее. Отклонения, равные нулю, на чертеже не указывают.

В машиностроении применяется в основном система отверстия, так как при этом необходимо меньше режущих инструментов с различными размерами, например, для всех посадок одного и того же класса точности при определенном номинальном размере потребуются развертки одного диаметра. При системе вала для обработки различных отверстий требуются развертки или протяжки разных диаметров в соответствии с разными размерами отверстий для различных посадок. Обработка валов обычно производится инструментами (резцами, шлифовальными кругами и т. д.), размеры которых не связаны с характером посадок.

Развертки, протяжки и другие калибрующие инструменты (размеры которых по диаметру определяют размеры обработанных ими поверхностей) относительно дороги. Таким образом, предпочитают систему отверстия из экономических соображений.

Однако в некоторых случаях оказывается более целесообразным применять систему вала. Это главным образом относится к тем случаям, когда на одном валу должно быть помещено несколько деталей с разными посадками. В этом случае при системе отверстия вал нужно было бы делать ступенчатым, а это не всегда позволит осуществить сборку.

2. Система отверстия и система вала. Особенности, отличия, преимущества

При сборке соединяемые детали соприкасаются между собой отдельными поверхностями, которые называются сопрягаемыми. Размеры этих поверхностей называются сопрягаемыми размерами (например, диаметр отверстия втулки и диаметр вала, на который посажена втулка). Различают охватывающую и охватываемую поверхности и соответственно охватывающий и охватываемый размеры. Охватывающую поверхность принято называть отверстием, а охватываемую - валом.

Сопряжение имеет один номинальный размер для отверстия и вала, а предельные, как правило, различные.

Если действительные (измеренные) размеры изготовленного изделия не выходят за рамки наибольшего и наименьшего предельных размеров, то изделие удовлетворяет требованиям чертежа и выполнено правильно.

Конструкции технических устройств и других изделий требуют различных контактов сопрягаемых деталей. Одни детали должны быть подвижными относительно других, а другие - образовывать неподвижные соединения.

Характер соединения деталей, определяемый разностью между диаметрами отверстия и вала, создающий большую или меньшую свободу их относительного перемещения или степень сопротивления взаимному смещению, называется посадкой.

Различают три группы посадок: подвижные (с зазором), неподвижные (с натягом) и переходные (возможен зазор или натяг).

Зазор образуется в результате положительной разности между размерами диаметра отверстия и вала. Если эта разность отрицательна, то посадка будет с натягом.

Различают наибольшие и наименьшие зазоры и натяги. Наибольший зазор - это положительная разность между наибольшим предельным размером отверстия и наименьшим предельным размером вала

Наименьший зазор - положительная разность между наименьшим предельным размером отверстия и наибольшим предельным размером вала.

Наибольший натяг-положительная разность между наибольшим предельным размером вала и наименьшим предельным размером отверстия.

Наименьший натяг - положительная разность между наименьшим предельным размером вала и наибольшим предельным размером отверстия.

Сочетание двух полей допусков (отверстия и вала) и определяет характер посадки, т.е. наличие в ней зазора или натяга.

Системой допусков и посадок установлено, что в каждом сопряжении у одной из деталей (основной) какое-либо отклонение равно нулю. В зависимости от того, какая из сопрягаемых деталей принята за основную, различают посадки в системе отверстия и посадки в системе вала.

Посадки в системе отверстия - это посадки, в которых различные зазоры и, натяги получают соединением различных валов с основным отверстием.

Посадки в системе вала - посадки, в которых различные зазоры и натяги получают соединением различных отверстий с основным валом.

Применение системы отверстия предпочтительнее. Систему вала следует применять в тех случаях, когда это оправдано конструктивными или экономическими соображениями (например, установка нескольких втулок, маховиков или колес с различными посадками на одном гладком валу).

3. Допуски и посадки шпоночных соединений

Шпоночное соединение – один из видов соединений вала со втулкой с использованием дополнительного конструктивного элемента (шпонки), предназначенной для предотвращения их взаимного поворота. Чаще всего шпонка используется для передачи крутящего момента в соединениях вращающегося вала с зубчатым колесом или со шкивом, но возможны и другие решения, например – защита вала от проворота относительно неподвижного корпуса. В отличие от соединений с натягом, которые обеспечивают взаимную неподвижность деталей без дополнительных конструктивных элементов, шпоночные соединения – разъемные. Они позволяют осуществлять разборку и повторную сборку конструкции с обеспечением того же эффекта, что и при первичной сборке

Шпоночное соединение включает в себя минимум три посадки: вал-втулка (центрирующее сопряжение) шпонка-паз вала и шпонка-паз втулки. Точность центрирования деталей в шпоночном соединении обеспечивается посадкой втулки на вал. Это обычное гладкое цилиндрическое сопряжение, которое можно назначить с очень малыми зазорами или натягами, следовательно – предпочтительны переходные посадки. В сопряжении (размерной цепи) по высоте шпонки специально предусмотрен зазор по номиналу (суммарная глубина пазов втулки и вала больше высоты шпонки). Возможно еще одно сопряжение – по длине шпонки, если призматическую шпонку с закругленными торцами закладывают в глухой паз на валу.

Шпоночные соединения могут быть подвижными или неподвижными в осевом направлении. В подвижных соединениях часто используют направляющие шпонки с креплением к валу винтами. Вдоль вала с направляющей шпонкой обычно перемещается зубчатое колесо (блок зубчатых колес), полумуфта или другая деталь. Шпонки, закрепленные на втулке, также могут служить для передачи крутящего момента или для предотвращения поворота втулки в процессе ее перемещения вдоль неподвижного вала, как это сделано у кронштейна тяжелой стойки для измерительных головок типа микрокаторов. В этом случае направляющей является вал со шпоночным пазом.

По форме шпонки разделяются на призматические, сегментные, клиновые и тангенциальные. В стандартах предусмотрены разные исполнения шпонок некоторых видов.

Призматические шпонки дают возможность получать как подвижные, так и неподвижные соединения. Сегментные шпонки и клиновые шпонки, как правило, служат для образования неподвижных соединений. Форма и размеры сечений шпонок и пазов стандартизованы и выбираются в зависимости от диаметра вала, а вид шпоночного соединения определяется условиями работы соединения.

Предельные отклонения глубин пазов на валу t1 и во втулке t2 приведены в таблице №1:

Таблица №1

Ширины b – h9;

Высоты h – h9, а при h свыше 6 мм – h11.

В зависимости от характера (вида) шпоночного соединения стандартом установлены следующие поля допусков ширины паза:

Для обеспечения качества шпоночного соединения, которое зависит от точности расположения плоскостей симметрии пазов вала и втулки, назначают допуски симметричности и параллельности и указывают их в соответствии с ГОСТ 2.308-79.

Числовые значения допусков расположения определяют по формулам:

Т = 0,6 Т шп

Т = 4,0 Т шп,

где Т шп – допуск ширины шпоночного паза b.

Расчетные значения округляют до стандартных по ГОСТ 24643-81.

Шероховатость поверхностей шпоночного паза выбирается в зависимости от полей допусков размеров шпоночного соединения (Ra 3,2 мкм или 6,3 мкм).

Условное обозначение призматических шпонок состоит из:

Слова "Шпонка";

Обозначения исполнения (исполнение 1 не указывают);

Размеров сечения b x h и длины шпонки l;

Обозначения стандарта.

Пример условного обозначения призматической шпонки исполнения 2 с размерами b = 4 мм, h= 4 мм, l = 12 мм

Шпонка 2 - 4 х 4 х 12 ГОСТ 23360-78.

Призматические направляющие шпонки закрепляются в пазах вала винтами. Для отжима шпонки при демонтаже служит резьбовое отверстие. Пример условного обозначения призматической направляющей шпонка исполнения 3 с размерами b = 12 мм, h = 8 мм, l = 100 мм Шпонка 3 - 12 х 8 х 100 ГОСТ 8790-79.

Сегментные шпонки применяют, как правило, для передачи небольших крутящих моментов. Размеры сегментных шпонок и шпоночных пазов (ГОСТ 24071-80) выбираются в зависимости от диаметра вала.

Зависимость полей допусков ширины паза сегментного шпоночного соединения от характера шпоночного соединения:

Для термообработанных деталей допускаются предельные отклонения ширины паза вала по Н11, ширины паза втулки - D10.

Стандарт устанавливает следующие поля допусков размеров шпонок:

Ширины b – h9;

Высоты h (h1) - h11;

Диаметра D - h12.

Условное обозначение сегментных шпонок состоит из слова "Шпонка"; обозначения исполнения (исполнение 1 не указывают); размеров сечения b x h (h1); обозначения стандарта.

Клиновые шпонки применяют в неподвижных соединениях, когда требования к соосности соединяемых деталей невысоки. Размеры клиновых шпонок и шпоночных пазов нормированы ГОСТ 24068-80. Длину паза на валу для клиновой шпонки исполнения 1 выполняют равной 2l, для остальных исполнений длина паза равна длине l закладной шпонки.

Предельные отклонения размеров b, h, l для клиновых шпонок такие же, как и для призматических (ГОСТ 23360-78). По ширине шпонки b стандарт устанавливает соединения по ширине паза вала и втулки с использованием полей допуска D10. Длина паза вала L – по Н15. Предельные отклонения глубин t1 и t2 соответствуют отклонениям для призматических шпонок. Предельные отклонения угла наклона верхней грани шпонки и паза ± АТ10/2 по ГОСТ 8908-81. Пример условного обозначения клиновой шпонки исполнения 2 с размерами b = 8 мм, h = 7 мм, l = 25 мм: Шпонка 2 - 8 х 7 х 25 ГОСТ 24068-80.

Контроль элементов шпоночного соединения универсальными средствами измерений из-за малости их поперечных размеров существенно затруднен. Поэтому для их контроля широко используются калибры.

В соответствии с принципом Тейлора проходной калибр для контроля отверстия со шпоночным пазом представляет собой вал со шпонкой, равной длине шпоночного паза или длине шпоночного сопряжения. Такой калибр осуществляет комплексный контроль всех размеров, формы и расположения поверхностей. Комплект непроходных калибров предназначен для поэлементного контроля и включает непроходной калибр для контроля центрирующего отверстия (гладкая непроходная пробка полного или неполного профиля) и шаблоны для поэлементного контроля ширины и глубины шпоночного паза.

Проходной калибр для контроля вала со шпоночным пазом представляет собой призму («наездник») с выступом-шпонкой, равной длине шпоночного паза или длине шпоночного сопряжения. Комплект непроходных калибров предназначен для поэлементного контроля и включает непроходной калибр-скобу для контроля размеров центрирующей поверхности вала и шаблоны для поэлементного контроля ширины и глубины шпоночного паза.

В машиностроении принято различать размеры сопрягаемые и сво­бодные.

Примером сопрягаемых размеров может служить наружный диаметр поршня пневматического молота и парный с ним внутренний диаметр цилиндра, в котором поршень совершает возвратно-поступа­тельное движение. В этом случае цилиндрическая поверхность поршня молота является типовой наружной поверхностью вала, а внутренняя поверхность цилиндра – типовой внутренней поверхностью отверстия.

Для краткости любую наружную поверхность сопрягаемых деталей называют валом, а внутреннюю – отверстием. Это относится и к поверхностям, форма которых заведомо отличается от цилиндрической. Так, в сопряжении шпонки с пазом паз является отверстием, а шпонка – валом.

Примером свободных размеров может служить длина втулки контейнера горизонтального гидравлического пресса, наружный диаметр фланца, диаметр заклепочной головки и т. п.

Систему допусков, в которой за основу берется постоянный предель­ный размер вала, называют системой вала (рис. 2, а ). Различные сопряжения с предельным размером вала получают путем необходимого изменения поля допусков отверстия. На чертежах система вала обозна­чается буквой «В» с индексом класса точности обработки и записывается справа от номинального размера, например 50В 3 . Действительный диа­метр вала в пределах допуска всегда бывает меньше номи­нального, в частном случае он равняется ему, но никогда не бывает больше.

Систему допусков, в которой за основу берется постоянный предель­ный размер отверстия, называют системой отверстия (рис. 2, б ). Раз­личные сопряжения с предельным размером отверстия получают путем изменения поля допусков вала. На чертежах система отверстия обозна­чается буквой «А» с индексом класса точности обработки и записывается справа от номинального размера, например 50А 3 . Действительный раз­мер отверстия всегда больше номинального в пределах допуска, в част­ном случае может равняться ему, но никогда не бывает меньше.

1.4. Посадки

В машиностроении при сборке деталей в узлы, а узлов – в машины или агрегаты сопрягают парные поверхности одинаковой формы, кото­рые либо входят одна в другую, либо примыкают одна к другой. Харак­тер сопряжения определяется посадкой, под которой понимают степень прочности соединения сопрягаемых деталей, или свободу их относитель­ного перемещения. Посадки создаются разностью размеров парных де­талей (вала и отверстия), входящих в сопряжения. Различают три основных типа посадок – посадки с зазором, или подвижные, посадки переходные и посадки с натягом, или неподвижные (прессовые).

При подвижной посадке сопряженные парные детали могут взаимно перемещаться во время работы в определенном направлении. Такой вид посадки применяется при сопряжении поршня с цилиндром. Чтобы обеспечить подвижную посадку, необходимо иметь диаметр цилиндра несколько больше диаметра поршня. Разность между диаметрами цилиндра и поршня (в общем случае между диамет­рами отверстия и вала) называют зазором ; например, при диаметре отверстия 50 мм, вала – 49,8 мм зазор будет 0,2 мм. Из этого следует, что зазор является величиной положительной.

При неподвижной посадке сопряженные парные детали прочно соединяются между собой; их взаимное перемещение во время работы исключается. Неподвижные посадки достигаются путем принудительной запрессовки вала в отверстие. При неподвижной посадке необходимо иметь диаметр вала до запрессовки несколько больше диаметра отвер­стия. Разность между диаметрами вала и отверстия называют натягом .

При переходных посадках, обеспечивающих хорошее центрирование отверстий, натяги могут быть положительными и отрицательными; в местах соединений образуется либо натяг, либо зазор, поэтому неподвижность сопрягаемых деталей большей частью обеспечивается при помощи крепежных элементов (шпонки, шплинты и т. д.); разность между диаметрами вала и отверстия незначительна, вследствие этого натяги или зазоры невелики.

В зависимости от степени прочности соединения на практике используется несколько типов подвижных, переходных и не­подвижных посадок. Из подвижных посадок в современном машино­строении наиболее часто применяются: 1) посадки скольжения С; 2) движения Д; 3) ходовая X; 4) теплоходовая ТХ; легкоходовая Л; 6) широкоходовая Ш; из переходных посадок: 1) глухая Г; 2) тугая Т; 3) напряженная Н; 4) плотная П; из неподвижных прессовых посадок: 1) горячая Гр; 2) прессовая Пр; 3) легкопрессовая Пл.

Посадку скольжения с весьма незначительным зазором используют для медленного перемещения деталей (например, пиноль в корпусе задней бабки токарного станка, шпиндель сверлильного станка и т. п.). Посадка движения, также имеющая малый зазор, обеспечивает совпа­дение осей вала и отверстия (шпиндели токарных станков, делительных головок и т. д.). Ходовые посадки с зазором заметной величины наибо­лее широко применяются в машиностроении для деталей, вращающихся с умеренными скоростями (коленчатые валы в коренных подшипниках, дроссели во втулке клапана паровоздушного молота и т. п.). Легкоходо­вые посадки со значительными зазорами имеют взаимное перемещение одной детали в другой при быстроходном вращении или умеренных скоростях, но при большой длине подшипников (валы центробежных насосов, валы приводов круглошлифовальных станков и т. п.). Посадки широкоходовые, обладающие весьма значительными зазорами, используют в тех случаях, когда скорости вращения весьма велики и возможны перекосы при сборке (валы в длинных подшипниках, холостые шкивы на валах и т. п.).

Глухие посадки применяются для деталей, которые не должны демонтироваться в течение всей службы (шестерня на валу бетономе­шалки или ковочной машины и т. п.). Тугие посадки дают меньший натяг, чем глухие; используются для деталей и узлов, которые при капитальном ремонте можно менять (ступенчатый шкив на валу при­вода транспортера или круглошлифовального станка и т. п.). Напряженная посадка дает или нулевой, или отрицательный натяг; встречается в узлах и деталях, подлежащих смене без особых усилий при мелких ремонтах (шестерни в металлорежущих станках и т. п.). Плотная посадка характеризуется отрицательным натягом (зазором); применяет­ся в узлах, подвергающихся сборке и разборке в процессе эксплуатации (сменные шестерни, сменные втулки и т. п.).

При горячей, прессовой и легкопрессовой посадках, используемых для неразъемных соединений без крепежных элементов, натяги бывают такими, что в процессе сборки на сопряженных парных поверхностях они создают упругие деформации, обеспечивающие во время работы противодействие взаимному смещению деталей (стальные бандажи ва­гонных колес, шестерни на промежуточном валу грузового автомобиля, втулки в шестерне передней бабки токарного станка и т. п.).

На чертежах тип посадки условно обозначается соответствующей буквой и индексом справа, указывающим класс точности, например, легкоходовая посадка 4-го класса точности обозначается Л 4 .

Таким образом, бывают посадки с зазором, при которых размер отверстия больше размера вала, бывают посадки с натягом, при которых размер вала больше размера отверстия. Кроме того, бывают переходные посадки, при которых поля допусков отверстия и вала находятся примерно на одном уровне . В этом случае о деталях, изготовленных по переходной посадке, нельзя заранее сказать, что будет в соединении зазор или натяг. Это зависит от действительных размеров собираемых деталей. Переходные посадки применяют, например, для центрирования вала электродвигателя с быстроходным валом редуктора. По таким посадкам соединяют валы с полумуфтами, которые обеспечивают центрирование валов.

Введём новое понятие – основное отклонение . Это одно из двух отклонений : либо верхнее, либо нижнее, которое ближе к нулевой линии и которое определяет положение поля допуска . На рисунке 7.2 у поля допуска отверстия основным будет нижнее отклонение EI, потому что оно ближе к нулевой линии. Это отклонение положительное, верхнее отклонение тоже будет положительным, т.к. оно выше нижнего отклонения. Следовательно, поле допуска отверстия будет выше нулевой линии, и размеры отверстия будут больше номинального размера. У поля допуска вала основным будет верхнее отклонение es. Оно ближе к нулевой линии, имеет отрицательное значение. Поэтому нижнее отклонение вала тоже будет отрицательным, и размеры вала будут меньше номинального размера.

Стандарт предусматривает две системы посадок: посадки в системе отверстия и посадки в системе вала . Эти системы базируются на таких понятиях как основное отверстие и основной вал . Основное отверстие обозначается буквой H, а основной вал – h. Признак основного отверстия – нижнее отклонение равно нулю, т.е. EI H = 0. У основного вала верхнее отклонение равно нулю, т.е. es h = 0. Следовательно, минимальный размер основного отверстия имаксимальный размер основного вала равны номинальному размеру.

Посадки в системе отверстия образуются сочетанием полей допусков валов с полем допуска основного отверстия. Посадки в системе вала образуются сочетанием полей допусков отверстий с полем допуска основного вала. Для построения поля допуска нужно знать основное отклонение (база) и допуск (т.е. квалитет – степень точности). Например, на рисунке 7.2 основным отклонением отверстия является нижнее отклонение EI = 0,1 мм. Линия, соответствующая нижнему отклонению, – это нижняя граница поля допуска. Верхняя граница отстоит от нижней на величину допуска T D = 0.1 мм. Так как верхняя граница не может быть ниже нижней, то для определения верхнего отклонения ES отверстия нужно суммировать: ES = EI + Т D = 0,1 +0,1 = 0,2 мм. Для вала основным является верхнее отклонение es = – 0.05 мм. Оно отрицательное, значит и нижнее отклонение тоже должно быть отрицательным. Для определения нижнего отклонения следует вычитать значение допуска: ei = es – T d = –0.05 –0.1 = – 0.15 мм. Таким образом, основное отклонение определяет положение поля допуска. Поэтому оно является основным. Можно напомнить, что положение поля допуска относительно нулевой линии (т.е. номинального размера) определяет предельные размеры детали.

Рисунок 7.3 содержит схемы расположения и обозначения стандартных основных отклонений отверстия (верхняя часть диаграммы) и вала (нижняя часть диаграммы).

Рис. 7.3. Схемы расположения и обозначения основных отклонений

отверстия и вала

Основные отклонения обозначены буквами латинского алфавита от A до ZC. Для отверстий это прописные буквы, для валов – строчные. Рассмотрим верхнюю часть диаграммы. От A до H основными отклонениями являются нижние отклонения, которые больше нуля (EI > 0), только для основного отверстия H оно равно нулю: EI H = 0. Следовательно, отверстия с этими отклонениями больше номинального размера и образуют с основным валом (es h = 0) посадки с зазором. Причём зазоры уменьшаются в указанной последовательности.

Основное отклонение JS принадлежит симметричному полю допуска, оно равно ± IT/2 (IT – стандартный допуск), т.е. верхнее отклонение ES = + IT/2, нижнее отклонение EI = – IT/2. Это отклонение является границей между отклонениями, образующими с основным валом посадки с зазором, и отклонениями, образующими переходные посадки (от JS до N) и посадки с натягом (от P до ZC).

Основные отклонения от K до ZC – это верхние основные отклонения ES. Для переходных посадок поля допусков расположены примерно на одном уровне с полем допуска основного вала. Для посадок с натягом поля допусков отверстий лежат ниже поля допуска основного вала. Значит размеры отверстий меньше размера основного вала, что приводит к натягу в соединении.

Нижняя диаграмма на рисунке 9 относится к основным отклонениям валов, которые образуют станлартные посадки валов от a до zc с основным отверстием H. Эта диаграмма является зеркальным отражением верхней диаграммы. Основные отклонения от a до h служат для образования посадок с зазором, отклонения от js до n – для переходных посадок, отклонения от p до zc – для посадок с натягом.

В таблице 7.1 содержатся числовые значения стандартных допусков. Эти допуски зависят от номинальных размеров валов и отверстий, а также от квалитетов. Квалитет (степень точности) – совокупность допусков, рассматриваемых как соответствующие одному уровню точности для всех номинальных размеров. В стандарте 20 квалитетов. Самые точные квалитеты от 01 до 5 предназначены преимущественно для калибров, т.е. для измерительных инструментов, предназначенных для контроля качества. 6-й квалитет соответствует самой высокой степени точности на машиностроительных предприятиях. Далее с увеличение номера квалитета степени точности уменьшаются.

Допуски по квалитетам обозначаются сочетанием прописных букв IT с порядковым номером квалитета, например, IT01, IT6, IT14.

Таблица 7.1



Поле допуска обозначается сочетанием буквы основного отклонения и порядкового номера квалитета, например, g6, h7, js8, H7, K6, H11. Обозначение поля допуска указывается после номинального размера, например, 40g6, 40H7, 40H11. Такое обозначение применяют конструкторы для поверхностей деталей на чертежах.

Посадка обозначается дробью, в числителе которой указывается обозначение поля допуска отверстия, а в знаменателе – поле допуска вала , например, H7/g6. Обозначение посадки указывается после номинального размера посадки, например, 40H7/g6. Это означает, что рассматриваемая посадка выполняется в системе отверстия, т.к. в числителе поле допуска основного отверстия в данном случае 7-го квалитета. В знаменателе поле допуска с основным отклонением g более точного 6-го квалитета. Такое основное отклонение применяется для посадок с гарантированным зазором. Указанное обозначение посадки конструкторы применяют на сборочных чертежах для соединяемых поверхностей деталей.

Подведя итог, отметим, что основное отклонение и допуск определяют положение поля допуска, а, следовательно, предельные размеры отверстия и вала. Государственный стандарт ГОСТ 25346-89 содержит стандартные значения основных отклонений, которые находятся в соответствующих таблицах стандарта. Это же относится к значениям стандартных допусков. Применение этих норм обязательно для всех. Только лишь в технически обоснованных случаях допустимо применение нестандартных значений допусков и посадок.

Основные понятия. В соединении двух деталей, входящих одна в другую, различают охватывающую и охватываемую поверхности. Наибо­лее распространены в машиностроении соединения деталей с гладкими ци­линдрическими (I) и плоскими параллельными (II) поверхностями. У ци­линдрических соединений поверхность отверстия охватывает поверхность вала. Охватывающая поверхность называется отверстием , охватыва­емая - валом . Названия «отверстие» и «вал» условно применяются и к другим нецилиндрическим охватывающим и охватываемым поверхностям (рис. 115).

Рис. 115

На рабочих чертежах в первую очередь проставляют размеры, которыми оценивают количественно геометрические параметры деталей.

Размер - это числовое значение линейной величины (диаметра, дли­ны, высоты и т. п.). Размеры подразделяются на номинальные, действи­тельные и предельные.

Номинальным размером (рис. 116) называется основной раз­мер детали, рассчитанный с учетом ее назначения и требуемой точности. Номинальный размер соединений - общий (одинаковый) раз­мер для отверстия и вала, составляющих соединение. Номинальные размеры деталей и соединений выбирают не произвольно, а по ГОСТ 6636-69 «Нормальные линейные размеры». В производстве номинальные размеры не могут быть выдержаны: действительные размеры всегда в большую или меньшую сторо­ну отличаются от номинальных. Поэтому, помимо номинальных (расчетных), различают также действительные и предельные размеры на деталях.


Рис. 116

Действительный размер - размер, полученный в результате измерения готовой детали с допустимой степенью погрешности. Допусти­мую неточность изготовления деталей и требуемый характер их соединения устанавливают посредством предельных размеров.

Предельными размерами называются два граничных значе­ния, между которыми должен находиться действительный размер. Боль­шее из этих значений называется наибольшим предельным размером, меньшее - наименьшим предельным размером (рис. 117,I). Таким образом для обеспечения взаимозаменяемости на чертежах необходимо вместо но­минального указывать предельные размеры. Но это сильно усложнило бы чертежи. Поэтому предельные размеры принято выражать посредством от­клонений от номинального.


Рис. 117

Предельное отклонение - это алгебраическая разность меж­ду предельными и номинальными размерами. Различают верхнее и нижнее предельные отклонения. Верхнее отклонение - это алгебраическая разность между наибольшим предельным размером и номинальным разме­ром. В соответствии с ГОСТ 25346-89 верхнее отклонение отверстия обозна­чается ES, вала - es. Нижнее отклонение - алгебраическая раз­ность между наименьшим предельным размером и номинальным размером. Нижнее отклонение отверстия обозначается ЕI, вала - ei.

Номинальный размер служит началом отсчета отклонений. Отклоне­ния могут быть положительными, отрицательными и равными нулю (см. рис. 117, II). В таблицах стандартов отклонения указывают в мик­рометрах (мкм). На чертежах отклонения принято указывать в милли­метрах (мм).

Действительное отклонение - алгебраическая разность между действительным и номинальным размерами. Деталь считают год­ной, если действительное отклонение проверяемого размера находится между верхним и нижним отклонениями.

Допуск, поле допуска, квалитеты точности . Допуск Т * - разность между наибольшим и наименьшим предельными размерами или абсолют­ная величина алгебраической разности между верхним и нижним отклоне­ниями.

Стандарт ГОСТ 25346-89 устанавливает понятие «допуск систе­мы», - это стандартный допуск, установленный системой допусков и по­садок. Допуски системы ЕСДП** обозначаются: IТ01, IТО; IТ1 ... IТ17, Бук­вы IТ обозначают «допуск ИСО» *** . Так, IТ7 обозначает допуск по 7-му квалитету ИСО.

Величина допуска не совсем полно характеризует точность обработки. Например, у вала? 8 _0.03 мм и вала?64_0.03 мм величина допуска оди­наковая и равна 0,03. Но обработать вал?64_0.03 мм значительно труднее, чем вал?8_0.03 мм.

В качестве единицы точности, с помощью которой можно выразить за­висимость точности от диаметра d, установлена единица допуска i (I). Чем больше единиц допуска содержится в допуске системы, тем больше допуск и, следовательно, меньше точность, и наоборот. Число единиц до­пуска, содержащихся в допуске системы, определяется квалитетом точ­ности.

Под квалитетом понимается совокупность допусков, изменяю­щихся в зависимости от номинального размера. Квалитеты охватывают до­пуски сопрягаемых и несопрягаемых деталей. Для нормирования различных уровней точности размеров от 1 мм до 500 мм в системе ЕСДП установ­лено 19 квалитетов: 01; 0; 1; 2 ... 17.

В настоящее время допуски измерительных инструментов и устройств - IТ01 - IТ7, допуски размеров в посадках - IТ3 ... IT13, допуски неответ­ственных размеров и размеров в грубых соединениях - IТ14 ... IТ17. Для каждого квалитета на основе единицы допуска и числа единиц допуска за­кономерно построены ряды полей допусков.

Поле допуска - поле, ограниченное верхним и нижним отклоне­ниями. Определяется оно величиной допуска и его положением относитель­но номинального размера. При графическом изображении (рис. 118) поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии.


Рис. 118

Все поля допусков для отверстий и валов обозначаются буквами латинско­го алфавита: для отверстий (I) - прописными (А, В, С, В и т. д.) и для валов (II) - строчными (а, b, с, d и т. д.). Ряд полей допусков обозначаются двумя буквами, а буквы О,W, Q и L не используются.

Разберем теперь сущность некоторых понятий. Допустим, что для какой- нибудь детали задан основной расчетный размер 25 мм. Это номинальный размер. В результате неточностей обработки действительный размер детали может оказаться больше или меньше номинального. Однако действитель­ный размер должен колебаться только в известных пределах. Пусть, напри­мер, наибольший предельный размер равен 25,028 мм, а наименьший пре­дельный размер -24,728 мм. Значит, допуск размера, характеризующий требуемую точность обработки детали, равен 25,028-24,728=0,300 мм.

Как уже указывалось, на чертежах обозначают не предельные размеры, а номинальный размер и допускаемые отклонения - верхнее и нижнее. Для рассматриваемой детали верхнее предельное отклонение будет равно: 25,028-25=0,028 мм; нижнее предельное отклонение: 24,728-25=0,272 мм. Размер детали, проставляемый на чертеже, - Верхнее предельное отклонение размера пишется над нижним. Значения отклонении запи­сываются более мелким шрифтом, чем номинальный размер. Знаки «плюс» и «минус» показывают, какое действие нужно произвести, чтобы подсчи­тать наибольший и наименьший предельные размеры.

Если нижнее и верхнее предельные отклонения равны, то их записывают так: .

В этом случае размер шрифта у номинального размера и у равных абсолютных величин отклонений одинаковый. Если одно из от­клонений равно нулю, то его совсем не указывают. В этом случае плюсовое отклонение наносят на место верхнего, а минусовое - на место нижнего предельного отклонения.

* Начальная буква французского слова Tolerance - допуск.

**Единая система допусков и посадок (ЕСДП).

***Международная организация по стандартизации (ИСО), рекомендации которой легли в основу ЕСДП.