Защитные датчики уровня воды для управления насосом: реле холостого хода. Простейшая схема автоматического управления уровнем воды Как самому собрать блок управления уровнем воды

Надёжное водоснабжение – неотъемлемая часть жилого дома, общественного здания, производственного помещения. Но вопросы водоотведения важны не меньше. Чтобы поддерживать надлежащий уровень комфорта на объекте и повысить долговечность строительных конструкций, необходимо выполнять аварийную откачку воды, а также в любых условиях обеспечивать работоспособность системы дренажа и канализации, не допуская подтоплений и переливов. Именно для этого трудятся «бойцы невидимого фронта» – фекальные и дренажные насосы, которые самостоятельно работают где-то на приусадебном участке или в недрах подсобных помещений. Автоматика для дренажного насоса делает оборудование по-настоящему практичным и максимально эффективным.

Дренажный насос ещё называют «насосом для грязной воды», так как он может перекачивать жидкости, содержащие большое количество твёрдых частиц. В поверхностном или погружном исполнении это оборудование незаменимо для перекачки воды из резервуаров, которые нуждаются в поддержании «уровня»: котлованов, приямков, скважин, аккумулирующих ёмкостей, коллекторов, крупных сточных труб, сливных ям и т.д.

Каскад из двух насосов с поплавковыми выключателями и пультом управления

Такие приборы помогут защитить уязвимые помещения, которые периодически подвергаются затоплению (подвалы, погреба, цокольные этажи). Также дренажные насосы применяют для обслуживания (чистить, отводить лишнюю воду) искусственных водоёмов с грунтовым дном, они позволяют без проблем качать воду для полива сельхозугодий из естественных источников – рек и озёр.

Важно! Способность нагнетать и транспортировать жидкости с механическими включениями вовсе не означает, что дренажный насос не будет качать чистую воду. Нередко его используют для заполнения накопительных ёмкостей, например при реализации двухступенчатой автономной системы водоснабжения коттеджа.

Основные функции автоматики

Главная задача автоматики для дренажных насосов – включать и отключать насос при достижении заданных условий, благодаря чему появляется возможность не просто принудительно осушать и набирать ёмкости, а поддерживать необходимый безопасный уровень жидкости без участия домовладельца.

Насосы – дорогостоящие устройства. Они «не любят» работать без воды, которая, будучи перекачиваемой рабочей средой, также играет немаловажную роль в смазке некоторых движущиеся частей и охлаждении оборудования. Сухой ход для дренажного насоса так же вреден, как и для любого другого прибора. Практика показывает, что невозможно быть на сто процентов уверенным, что этого не случится, даже если уровень в источнике/резервуаре активно восполняется. Избежать таких ситуаций позволяет автоматика, которая в нужный момент отключает питание.

Вариант комплектации станции управления дренажным насосом

Автоматика для дренажного насоса – не просто выключатель. Её нужно рассматривать как сложное многокомпонентное устройство, так называемый «пульт управления», который помимо прочего защищает силовое оборудование от:

  • короткого замыкания;
  • перепада напряжения (от повышенного и слишком низкого);
  • тока утечки (в том числе человека от поражения током);
  • обрывов фазного провода и перекоса фаз (для устройств на 380 вольт);
  • повышения силы тока (при заклинивании рабочих колёс);
  • подгорания/залипания контактов и клемм.

В продаже имеются полностью готовые пульты, к которым нужно только подсоединить необходимые датчики и произвести программирование. При наличии опыта можно и самим на DIN-рейке отдельного щитка собрать функциональный управляющий блок.

Важно! Устройства, контролирующие работу дренажных насосов, позволяют включать/выключать и другие электрозависимые приборы, например ТЭНы, а также при помощи звукового зуммера или лампы сигнализировать о состоянии оборудования и аварийных ситуациях.

Как автоматизировать работу дренажного насоса

Управление дренажным насосным оборудованием всегда осуществляется по изменению уровня жидкости. Есть несколько вариантов устройств, но все они функционируют путём подачи или отключения питания (цепь разрывается или замыкается). Рассмотрим самые распространённые решения для дренажных приборов.

Способы применения поплавковых выключателей

Универсальное устройство, которое позволяет управлять насосами, когда необходимо откачивать жидкость или наполнять резервуары. Поплавковый выключатель представляет собой небольшой герметичный бокс из пластика со стационарно подсоединённым трёх- или четырёхжильным кабелем длиной до 10 метров. Именно таким типом автоматики снабжены простые бытовые насосы, но «поплавок» можно купить и отдельно.

Устанавливают поплавковый выключатель погружением в перекачиваемую жидкость, его прикрепляют к стенке ёмкости или фиксируют на силовом кабеле насоса. Чтобы более точно выставить диапазон рабочего уровня, на провод выключателя надевается и фиксируется скользящий груз. Меняя длину кабеля между выключателем и огрузкой, устанавливают оптимальные моменты срабатывания поплавка.

По сути, поплавковый выключатель является одновременно датчиком уровня и коммутирующим устройством. Работает он очень просто. Внутри корпуса с положительной плавучестью по специальному каналу свободно движется металлический шарик. При поднятии/опускании поплавка под углом около 45 градусов шар уходит в крайнее положение и ударяет по клавише двухпозиционного микровыключателя, который, в свою очередь, запитывает цепь, либо разрывает её.

Важно! Автоматика для дренажного насоса с микровыключателем в поплавке является недорогим решением, однако она не может обеспечить высокую точность контроля уровня. Кроме того, поплавковый выключатель не позволяет полностью осушать резервуары. Также ему свойственны проблемы с залипанием контактов, что, впрочем, решается применением вспомогательного контактора.

Схема устройства автоматики с тремя кондуктометрическими датчиками

Кондуктометрические датчики уровня

Принцип работы такой системы управления основан на электропроводности перекачиваемых жидкостей. Электроды из нержавеющей стали погружают в воду. Один из них, контрольный, должен всегда находиться в воде, а другие, сигнальные, монтируют на своих уровнях. Между ними по рабочей среде постоянно передаются малые токи. Если вода достигает нижнего сигнального датчика, то между ним и контрольным электродом появляется прослойка из воздуха (который не проводит электричество), что сразу же улавливает управляющий блок. А когда вода поднимается до верхнего датчика, воздух, наоборот, вытесняется жидкостью, и сигнальная цепь замыкается.

Важно! В качестве контрольного электрода может использоваться металлическая стенка резервуара или заземлённый корпус насоса.

Если поплавки могут работать как с пультом, так и самостоятельно, то такая автоматика обязательно комплектуется выносным блоком управления. Именно к нему поступают сигналы о состоянии слаботочных цепей внутри резервуара, а затем уже контролер отдаёт команду на срабатывание коммутирующего устройства (например, магнитного пускателя) для включения/выключения насоса. Кстати, многоэлектродные датчики могут управлять несколькими насосами, срабатывающими одновременно или поочерёдно, в том числе установленными в разных резервуарах.

В системе могут использоваться кондуктометрические датчики с несколькими электродами (для отслеживания большого количества уровней), но также возможны конфигурации, где функционирует только один электрод. Такая вариативность позволяет собрать автоматику для дренажного насоса своими руками, которая будет наиболее эффективной для конкретных условий. В любом случае кондуктометрические устройства управления надёжнее и намного точнее, чем системы контроля с поплавковыми выключателями.

Видео: автоматика для насоса

Наличие проточной и питьевой воды - важнейшая составляющая комфортного проживания и отдыха за городом. В ситуации, когда центральное водоснабжение недоступно, единственным верным решением становится бурение скважины или колодца и последующая установка автоматического погружного насоса. Бесперебойное функционирование агрегата зависит от системы управления, которая собирается по разным схемам.

  1. Обзор блоков управления разных производителейa
    • Прибор управления Овен САУ-М2

Управление погружным насосом - целесообразность автоматики

Для обустройства в загородном доме полнофункциональной системы водоснабжения необходима автоматизация процесса наполнения расходных емкостей. Управление насосом должно быть надежным в работе и простым по устройству.

Автоматизация насосной установки позволяет добиться бесперебойного и надежного водоснабжения, сократить эксплуатационные расходы и затраты труда, а также уменьшить объемы регулирующих резервуаров.

Для организации автоматической работы насоса кроме стандартной аппаратуры общего применения (магнитных пускателей, контакторов, промежуточных реле и переключателей) используют и специальные аппараты контроля/управления. К таким элементам относят:

  • струйные реле;
  • реле контроля уровня и заливки;
  • электродные реле уровня;
  • датчики емкостного типа;
  • различные манометры;
  • поплавковое реле и т.д.

Варианты управления погружным насосом

Можно выделить три вида приборов для управления погружным насосом:

  • блок управления в виде пульта;
  • прессконтроль;
  • автоматическое управление с механизмом поддержания постоянного давления воды в системе.

Первый вариант - простейший блок управления, способный защитить насос от перепадов напряжения и возможных коротких замыканий. Автоматический режим работы достигается подключением блока управления к реле уровня или реле давления. Иногда пульт управления подсоединяется к поплавковому выключателю. На подобный блок автоматики цена не превышает 4000-5000 рублей. Однако целесообразности использования такого управления без защиты насоса от сухого хода и реле давления нет.


Существуют блоки со встроенными системами, например, «Водолей 4000» стоимостью 4000-10000 р. Существенный плюс оборудования - простота монтажа. Установку возможно выполнить самостоятельно без привлечения специалистов.

Второй вариант - «прессконтроль» оснащен встроенными системами пассивной защиты от сухого хода и автоматизированной работы насоса. Управление базируется по ориентировке на ряд параметров, среди которых обязательно учитываются уровень протока и давления воды. Например, если расход воды выше 50 л/мин, то оборудование под корректировкой прессконтроля функционирует непрерывно. По мере уменьшения водяного потока/повышения давления срабатывает автоматика и прессконтроль отключает насос.

При расходовании жидкости менее 50 л/мин запуск насоса происходит со снижением давления в системе водоснабжения до 1,5 атмосфер. Эта функция особенно важна в условиях резкого скачка давления, когда требуется сократить количество включений/выключений устройства при минимальном расходе воды.

Удачные модели прессконтрольного оборудования: Brio-2000M и Водолей.

Третий вариант - блочное управление с поддержанием стабильного давления по всей системе. Это устройство целесообразно устанавливать там, где крайне нежелательны «скачки» давления.


Важно! Стабильно завышенные показатели давления увеличивают расход электроэнергии, при этом КПД насосного оборудования снижается

Шкаф управления погружным насосом: необходимость и функции

Шкаф управления - обязательный элемент автономной системы водоснабжения, работающий на базе насоса погружного типа. В нем интегрируются все управляющие, контрольные узлы и предохранительные блоки.

При помощи распределительного шкафа получится решить ряд задач:

  1. Обеспечение плавного, безопасного пуска электродвигателя насоса.
  2. Регулирование частотного преобразователя.
  3. Отслеживание эксплуатационных параметров автономного водоснабжения: температура воды, давление в трубах, уровень в скважине.
  4. Выравнивание характеристик тока, который подается на клеммы электродвигателя и регулирует частоту вращения насосного вала.

Шкаф управления, обслуживающий одновременно несколько агрегатов, имеет расширенный функционал:

  1. Контроль периодичности работы насосов. Блоки управления попеременно обеспечивают равномерный износ машинной части оборудования. Это увеличивает почти в два раза срок эксплуатации напорного оборудования.
  2. Отслеживание непрерывности работы агрегатов. Если один насос вышел из строя, то скважина продолжит выкачку воды на второй (резервной) линии.
  3. Контроль функциональности насосного оборудования. Во время простоя устройства предотвращается его заиливание.

Типовая комплектация шкафа управления

Распределительный шкаф для погружного насоса (водопроводного, дренажного, пожарного) состоит из следующих элементов:

  1. Корпус - металлическая коробка, рассчитанная для монтажа электротехнического оборудования.
  2. Лицевая панель — изготавливается на базе крышки корпуса, в которую встроены кнопки «Стоп»/«Пуск». На лицевой стороне монтируются индикаторы работы датчиков и насосов, а также реле переключения с ручного на автоматический режим.
  3. Блок контроля фаз состоит из трех датчиков, отслеживающих нагрузку по фазам. Устройство устанавливается около «входа» в аппаратную часть распределительного шкафа.
  4. Контрактор - переключатель, подающий электричество на клеммы насосной установки и отключающий агрегат от сети.
  5. Предохранитель - специальное реле, нивелирующее последствия короткого замыкания в системе. В случае замыкания перегорит плавкий элемент предохранителя, а не обмотка двигателя или содержимое шкафа.

  6. Блок управления - контролирует режим работы агрегата. Состоит из датчика отключения/включения насоса и датчика переполнения. Клеммы датчиков вводятся в гидробак и в скважину.
  7. Частотный преобразователь управляет оборотами вала асинхронного двигателя, сбрасывая и наращивая частоту вращения в момент выключения и старта насоса.
  8. Датчики давления и температуры подключаются к контрактору и блокируют запуск агрегата в ненадлежащих условиях эксплуатации - обледенении труб, повышении давлении и пр.

Подобная «начинка» шкафов управления принята за основу многими производителями. Но наряду с тем, некоторые компании внедряют в типовую схему инновационные решения, повышая конкурентоспособность продукта.

Обзор блоков управления разных производителей

Автоматическая станция «Каскад»

Станция управления погружным насосом «Каскад» предназначена для автоматического управления/защиты трехфазного электродвигателя агрегата, рассчитанного на 380 В. Станция представляет собой металлический шкаф, запирающийся на замок. В комплект входят:

  • станция управления;
  • датчик сухого хода (кондуктометрический тип);
  • датчик уровня;
  • паспорт и руководство по эксплуатации.

Технические и эксплуатационные характеристики станции «Каскад»:

  • номинальный ток - до 250 А;
  • рабочее положение - вертикальное;
  • питание датчиков уровня переменным током;
  • измерение тока по фазам нагрузки;
  • питающее напряжение - 380 В;
  • степень защиты - IP21, IP54.

Выпускаемые модели

Аварийное отключение в случае:

  • перегрузок во время работы и в момент запуска;
  • обрыва одной/двух фаз;
  • «холостом» ходе двигателя;
  • перегреве электродвигателя;
  • низкого дебета скважины;
  • короткого замыкания в цепи электродвигателя.

Устройство управления «Высота»

Устройство защиты/управления погружным наосом «Высота» предназначено для центробежных скважных агрегатов мощностью 2,8-90 кВт. Основные функции:

  • пуск/остановка насоса зависимо от уровня жидкости в резервуаре;
  • выключение агрегата при коротких замыканиях;
  • защита от сухого хода;
  • контроль сопротивления изоляции двигателя;
  • контроль нагрузки в фазе.

Важно! Если не используется датчик уровней, то возможна работа устройства в дистанционном режиме управления

Принцип работы станции «Высота»

При отсутствии в резервуаре воды, нижний и верхний электронные датчики (КНУ, КВУ) разомкнуты, а реле К1 обесточено - происходит запуск насосного оборудования. При верхнем уровне жидкости контакт КВУ замыкает цепь, срабатывает реле К1 и размыкает цепь катушки пускателя - насос отключается. После понижения уровня воды ниже КНУ происходит повторное включение электронасоса.

Защита от короткого замыкания электроцепи обеспечивается выключателем QF, цепи управления - предохранителем FU. Токовое тепловое реле КК защищает от перегрузок, при срабатывании светиться лампочка с надписью «Перегрузка».

Прибор управления Овен САУ-М2

Прибор для управления погружным насосом Овен САУ-М2 используется для поддержания уровня воды в накопительных емкостях, резервуарах, отстойниках и комплексах осушения.

Технические характеристики и условия эксплуатации:

  • номинально напряжение - 220В;
  • допустимые отклонения от уровня рекомендованного напряжения — +10…-15%;
  • максимально допустимый ток - 8 А;
  • сопротивление жидкости, при котором срабатывает датчик - до 500 кОм;
  • степень зашиты корпуса - IP44;
  • температура окружающей среды — +1…+50°С;
  • относительная влажность воздуха - максимум 80% при температуре +35°С;
  • атмосферное давление - около 86-106,7 кПа.

Функциональная схема блока управления погружным насосом САУ-М2

Когда уровень воды в резервуаре достигает нижней отметки, где установлен длинный электрод датчика бака, емкость автоматически наполняется до верхнего уровня, на котором монтирован короткий электрод датчика бака. К устройству подключены 2 трехэлектродных датчика:

  • датчик уровня заполняемой емкости;
  • датчик уровня в емкости, используемой для забора жидкости (скважина).

Компараторы 1-4 сравнивают значения сигналов с опорным значением, после чего выдают сигнал на включение/выключение реле насоса, к которому подсоединен электропривод агрегата.

Реле «Насос» выключается при затоплении короткого электрода датчика емкости и включается при осушении длинного электрода (нижний уровень).

Простая схема управления погружным насосом

Для обустройства дачного водоснабжения на небольшом возвышении желательно разместить емкость для накопления воды. Из бака по водопроводным трубам вода будет подаваться в дом и нужные места приусадебного участка. На рисунке приведена схема простейшего механизма управления насосом, которое можно организовать самостоятельно.



Схема состоит из небольшого количества элементов. Достоинства такого управления - простота установки и надежность.

Принцип работы:

  1. Запуск и выключение агрегата осуществляется нормально-замкнутым контактом реле К1.1.
  2. Режим работы выбирается переключателем S2 (водоподъем-дренаж).
  3. Датчики F1 и F2 контролируют уровень воды в резервуаре (в качестве бака можно применять обычную деревянную бочку или пластмассовую емкость).
  4. Включение питания выключателем S1, в случае, когда уровень жидкости ниже датчика F1 катушка реле обесточена - насос запускается через замкнутые контакты реле К1.1. После того, как вода поднимется до датчика F1 транзистор VT1 откроется и включит реле К1. Нормально-замкнутые контакты К1.1 рассоединятся и агрегат остановится.

В системе управления используется маломощный трансформатор от вещательного приемника. При этом важно соблюдать, чтоб напряжение на конденсаторе С1 было не менее 24 В. Диоды КД212А можно заменить любым диодом с выпрямленным током порядка 1 А и обратным напряжением более 100 В.


strport.ru

Доброго всем времени суток. Прошу помощи в создании прошивки для управления насосом давления воды.
Прошивку для дешевого МК таких как PIC12F675 или ATTiny13A.
Задачи блока управления насосом.
1) Поддержание давления воды в системе водопровода.
2) Защита от сухого хода (отключение насоса во время отсутствия воды в системе)
3) Кнопка "принудительная остановка" насоса имеющая приоритет не зависимо от показаний датчиков.
4) Кнопка "Принудительный пуск" (необходима после аварийной остановки либо для запуска системы после принудительной остановки)

И так все по порядку:
1)
Система запуска насоса (нижний порог давления воды)
Планируется использовать обычное самое дешевое механическое реле включения насоса
такое как этот

Его задачей служит лишь запустить двигатель насоса при достижении нижнего порога заданного давления воды в системе. Предполагается наличие нормально разомкнутых контактов которые при достижении нижнего порога будут переходить в замкнутое состояние.
2)
Система отключения двигателя насоса при достижении верхнего порога давления в системе а так же защита от сухого хода двигателя во время отсутствия воды в системе водопровода
Система отключения двигателя насоса планируется выполнить своими руками что удешевляет его стоимость и повышает надежность системы (что уже было проверено на своем личном опыте путем пробных испытаний)
Система отключения представляет собой две пластиковые трубы (диаметр каждый выбирает под свои нужды и возможности) расположенные в вертикальном положении и запаралелены между собой.
На картинке трубки показаны голубым цветом.

В одной из трубок будет находится стеклянная капсула (колба) внутри которой расположен неодимовый магнит. Я использовал в качестве капсулы флакон от духов пробников. Положив туда неодимовый магнит и закрыв капсулу начал эксперементировать в тазике с водой. Цель эксперимента заключается в том, что бы добиться максимально медленного погружения капсулы под воду на дно. Капсула даже с магнитом остается на плаву и не тонет, необходимо положить туда столько магнитиков что бы капсула МЕДЛЕННО тонула. Я положил 4-ре плоских кругленьких неодимовых магнитов и добавил чуть чуть песка. В общем необходимо добиться самое медленное погружение
под воду, но обязательно что бы капсула уходила на дно, так как в нижней части трубки, где будет находится капсула будет установлен нормально разомкнутый геркон. Тем самым мы добиваемся сразу две задачи:
а) Защита от сухого хода (в отсутствии воды в системе) так как без воды капсула будет находится постоянно внизу и магниты капсулы повлияют на геркон переведя его в замкнутое состояние.
б) Отключение насоса при достижении максимального давления. После достижения нижнего порога давления, механическое реле запустит двигатель и пойдет процесс нагнетания давления и заполнения ресивера водой и все это время колба с магнитами будет находится в верхнем положении в удалении от геркона. Как только система будет заполнена (включая ресивер) и все краны потребители будут закрыты движение воды в трубке прекратится и капсула с магнитами опустится к низу и отключит (с помощью геркона) двигатель насоса.

ПРИ ЭТОМ ПРИОРИТЕТ ДАТЧИКА ОТКЛЮЧЕНИЯ ДОЛЖЕН БЫТЬ ВЫШЕ ЧЕМ У ДАТЧИКА ВКЛЮЧЕНИЯ

Чем хороша именно эта система отключения двигателя и защита от сухого хода?
1) В том, что во время отсутствия в системе воды капсула с магнитами однозначно будет находится в нижнем положении, что вызовет отключение двигателя.
2) В том, что у всех разные двигатели и насосы к ним имеющие разную мощность и данная система отключения сама определяет максимальную возможную мощность насоса и отключит двигатель при достижении максимального верхнего значения давления.

У меня установлен китайский насос внутри которого имеются 5 крыльчаток на одном валу. Когда все крыльчатки исправны и чисты насос набирает рабочее давление 6 атмосфер, но если сломается хоть одна из них давление до 6ти атмосфер не доходит и данная система без всяких корректировок отключит насос на возможном для насоса пределе давления, так как при отсутствии протока воды капсула с магнитами опустится к геркону.

Саму систему я уже собрал и попробовал в деле, работает отлично без нареканий, но у меня нет микроконтроллерного управления к нему и использую в управлении микросхему CD4013BE.

Но хотелось бы использовать МК с функциями описанными в начале.

Подробнее о прошивке.
На один выход с МК будет подаваться сигнал запуска двигателя с механического реле(допустим GND)
На второй выход МК подавать сигнал отключения двигается с геркона (и так же GND) при этом данный сигнал должен иметь преимущество над сигналом включения двигателя, что означает, что если даже механическое реле подает сигнал на включение двигателя то при включенном герконе двигатель насоса будет отключен НО! на данный приоритет должна быть задержка в 5 секунд. Для чего нужна задержка в 5 секунд?
При выключенном состоянии двигателя насоса и набранном давлении геркон однозначно будет в замкнутом состоянии и при нижнем пороге давления (и при постоянном приоритете выключенного состояния) геркон просто не даст включится насосу.
Третий выход МК — кнопка принудительного отключения системы (отключит систему до тех пор пока не будет нажата кнопка принудительно запуска двигателя.
Четвертый выход МК — кнопка принудительно запуска двигателя насоса (запустит систему либо после аварийной остановки в момент отсутствия воды в системе, либо после принудительной остановки двигателя насоса, при этом после нажатия данной кнопки система должна работать в штатном режиме.
Пятый выход с МК — выход на управление реле, для запуска двигателя насоса.

В общем если можно напишите прошивку на маленькую МК с 8 ногами PPIC12F675 или ATTiny13A
у которой следующий функционал:
При подаче сигнала на запуск двигателя, запуск реле осуществляется на 5 секунд и если по истечении 5 секунд геркон не будет разомкнут то система уйдет в аварийный режим. Если в течении 5ти секунд геркон разомкнется то система будет работать пока геркон при набранном давлении опять не замкнется. Так же добавить две кнопки — "принудительное включение" и "принудительное отключение" для использования при поливе или длительном использовании воды не требующего хорошего давления.

sxem.org

Кондуктометрический метод управления

Существует значительно более надежный метод контроля и управления за уровнем жидкости — это кондуктометрический метод. Подходит, правда, только для токопроводящих жидкостей, но подавляющее большинство задач касается регулирования уровня воды, которая отлично проводит ток.
Принцип основан на том, что в жидкость погружаются электроды, между которыми протекает малый ток с небольшим напряжением. Специальный контроллер, таким образом с абсолютной точностью отслеживает уровень жидкости. Метод обладает высокой надежность, точностью регулирования и более гибки режим, т.к. можно произвольно выставить уровни.

Приведем пример: существует скважина с низким дебитом, соответственно скважинный насос требуется защитить от работы без воды максимально надежно и обеспечить его комфортную работу. Только кондуктометрическим способом мы можем обеспечить правильный режим эксплуатации насоса и высокую надежность срабатывания.
Мы можем задать режим, при котором насос будет отключаться при недопустимом уровне жидкости, а включаться только при полном восстановлении уровня воды в скважине. Это позволит не только защитить насос, но и обеспечить редкий запуск насоса. В противном случае его ресурс сильно сократится, т.к. небольшой подъем воды включит насос, который в считанные секунды эту воду выкачает и вновь отключится. И так короткими циклами. Это и некомфортно и быстро выведет насос из строя.
Контроллер — универсальное коммутирующее изделие, которому можно найти массу применений и расширить функционал. Например, вы хотите знать о аварийной ситуации — подключаем модульный зуммер или лампу, которая будет сигнализировать о неисправности. Подключив краны с сервоприводом, легко построить систему защиты от протечки воды. И многое другое.

В качестве электродов для кондуктометрической системы подойдет любой токопроводящий металлический предмет. Но так, как многие материалы окисляются и ржавеют, то рекомендуется в качестве электродов использовать элементы из латуни и нержавеющей стали.
Предлагаемые заводские электроды можно посмотреть здесь

В качестве общего (нижнего) электрода, так же можно использовать корпус контролируемой емкости, если она металлическая. При автоматизации погружного насоса в качестве общего электрода может выступать корпус самого насоса, тогда просто подключаем клемму общего электрода на контакт земли кабеля насоса.

vodoprovod.ru

Необходимость использования автоматики

Чтобы система водоснабжения загородного дома была автоматической и работала без вашего вмешательства, необходим автомат (система автоматики), которая будет поддерживать определённое давление в системе и управлять запуском и остановкой насосного оборудования.

Чтобы управление насосом было простым и надёжным, помимо стандартной аппаратуры общего назначения (контакторов, магнитных пускателей, переключателей и промежуточных реле) используются специальные устройства контроля и управления. К ним можно отнести следующие изделия:

  • струйные реле;
  • датчики контроля давления и уровня жидкости;
  • электродные реле;
  • ёмкостные датчики;
  • манометры;
  • поплавковые датчики уровня.

Варианты управления насосным оборудованием

Для управления погружным насосом используются следующие виды приборов:

  • пульт управления, состоящий из блока необходимых механизмов;
  • прессконтроль;
  • автомат для управления, который поддерживает определённое давление в системе водоснабжения.

Пульт управления – это довольно простой блок, который позволяет уберечь насосное изделие от перепадов напряжения и коротких замыканий. Автоматический режим функционирования можно получить, если подключить блок управления к реле давления и уровня жидкости. В некоторых случаях пульт управления присоединяют к поплавковому датчику. Цена такого блока управления невысокая, но её эффективность без использования защиты насоса от работы на сухую и реле давления под сомнением.

Совет: для самостоятельного монтажа лучше использовать блок со встроенной системой.

Блок управления в виде прессконтроля имеет встроенную пассивную защиту от работы на сухую, а также оборудование для автоматизированной работы насоса. Для управления системе требуется контролировать ряд параметров, а именно давление жидкости и уровень потока. К примеру, если расход воды превышает 50 литров в минуту, то насосное оборудование под управлением прессконтроля работает без остановки. Автомат срабатывает и отключает насос, если водяной поток уменьшается, а давление в системе повышается. Если расход жидкости меньше 50 литров в минуту, то насосное изделие запускается при снижении давления в системе до 1,5 бар. Такая работа автомата особенно важна при резких скачках давления, когда нужно сократить количество запусков и остановок насоса при минимальном расходе.

Автомат для управления, который позволяет поддерживать постоянное давление в системе, необходимо использовать там, где любые скачки давления крайне нежелательны.

Внимание: если показатели давления будут постоянно завышены, то расход электроэнергии увеличится, а КПД насоса наоборот понизится.

Шкаф управления

Наиболее совершенный автомат для контроля над работой насосного оборудования – это шкаф управления. В это устройство встроены все необходимые узлы и предохранительные блоки для управления погружным насосом.

С помощью такого шкафа можно решить множество задач:

  1. Оборудование обеспечивает безопасный плавный запуск двигателя.
  2. Осуществляется регулировка работы частотного преобразователя.
  3. Устройство отслеживает эксплуатационные параметры системы автономного водоснабжения, а именно давление, температуру жидкости, уровень воды в скважине.
  4. Автомат выравнивает характеристики тока, подающегося на клеммы двигателя, а также регулирует частоту вращения вала насосного оборудования.

Также есть шкафы управления, которые могут обслуживать несколько насосов. Эти изделия могут решать ещё больше задач:

  1. Они будут контролировать периодичность работы насосов, что позволит увеличить срок службы агрегатов, поскольку благодаря блоку управления может обеспечиваться равномерный износ механических частей.
  2. Специальные реле будут отслеживать непрерывную работу насосных изделий. При выходе из строя одного агрегата, работа будет перекладываться на второе изделие.
  3. Также система автоматики может самостоятельно контролировать исправность насосного оборудования. Во время длительного бездействия насосов будет предотвращаться их заиливание.

В стандартную комплектацию шкафа управления входят следующие узлы и элементы:

  • Корпус в виде стальной коробки с дверками.
  • На основе крышки корпуса изготавливается лицевая панель. В неё встроены кнопки пуска и остановки. На панели устанавливаются индикаторы работы насоса и датчиков, а также реле для выбора автоматического и ручного режима работы.
  • Возле входа в аппаратный отсек шкафа устанавливается устройство контроля фаз, которое состоит из 3-х датчиков. Этот блок отслеживает нагрузку по фазам.
  • Контактор – это изделие для подачи электрического тока на клеммы насоса и отключения агрегата от сети.
  • Предохранительное реле для защиты от короткого замыкания. В случае замыкания будет повреждён плавкий предохранитель, а не обмотка электродвигателя насоса или узлы и детали шкафа.
  • Для контроля над работой агрегата в шкафу стоит блок управления. Здесь есть датчики переполнения, запуска и остановки насоса. При этом клеммы этих датчиков выводятся в скважину или гидробак.
  • Для управления вращением вала электродвигателя используется частотный преобразователь. Он позволяет плавно сбрасывать и наращивать частоту вращения двигателя при запуске и остановке насосного оборудования.
  • Датчики температуры и давления присоединяются к контактору и предотвращают запуск насоса в неподходящих условиях.

Простейшая схема управления

Применение простой схемы оправдано для обустройства водоснабжения небольшого дачного дома. В этом случае ёмкость для сбора воды лучше разместить на небольшом возвышении. Из накопительного бака по системе трубопроводов вода будет поставляться в разные места приусадебного участка и в дом.

Совет: в качестве накопительной ёмкости можно использовать металлическую, пластиковую или деревянную бочку или бак.

Самую простую схему управления насосным оборудованием несложно реализовать самостоятельно, поскольку она состоит из небольшого числа элементов. Главное достоинство такой схемы – надёжность и простота установки.

Принцип работы данной схемы управления состоит в следующем:

  1. Для включения и отключения насосного оборудования используется контактное реле (К 1.1) нормально-замкнутого типа.
  2. Схема подразумевает два режима работы – подъём воды из скважины и дренаж. Выбор того или иного режима осуществляется при помощи переключателя (S2).
  3. Для контроля уровня воды в накопительной ёмкости используются реле F 1 и 2.
  4. При снижении воды в баке ниже уровня расположения датчика F1 происходит включение питания через переключатель S При этом катушка реле будет обесточена. Запуск насосного оборудования происходит при замыкании контактов на реле К1.1.
  5. После подъёма уровня жидкости до датчика F1 произойдёт открывание транзистора VT1 и включение реле К1. При этом контакты нормально-замкнутого типа на реле К1.1 разомкнутся и насосное оборудование отключится.

В данной системе управления используется маломощный трансформатор, который можно взять во вращательном приёмнике. При сборке системы важно, чтобы на конденсатор С1 подавалось напряжение не менее 24 В. Если у вас нет диодов КД 212 А, то вместо них можно использовать любые диоды с выпрямленным током в пределах 1 А, при этом обратное напряжение должно быть более 100 В.

vodakanazer.ru

Принцип действия поплавкового датчика

В жидкость помещается предмет, который в ней не тонет. Это может быть кусок дерева или пенопласта, полая герметичная сфера из пластмассы или металла и многое другое. При изменении уровня жидкости этот предмет будет подниматься или опускаться вместе с ней. Если поплавок соединить с исполнительным механизмом, то он будет выполнять функции датчика уровня воды в ёмкости.

Классификация оборудования

Поплавковые датчики могут самостоятельно осуществлять контроль над уровнем жидкости или подавать сигнал в схему контроля. По этому принципу их можно разделить на две большие группы: механические и электрические.

Механические устройства

К механическим относятся самые разнообразные поплавковые клапаны уровня воды в баке. Принцип их действия состоит в том, что поплавок соединён с рычагом, при изменении уровня жидкости поплавок перемещает вверх или вниз этот рычаг , а он, в свою очередь, воздействует на клапан, который и перекрывает (открывает) подачу воды. Такие клапаны можно увидеть в сливных бачках унитазов. Их очень удобно использовать там, где нужно постоянно добавлять воду из центральной системы водоснабжения.

Механические датчики обладают рядом преимуществ:

  • простота конструкции;
  • компактность;
  • безопасность;
  • автономность - не требуют никаких источников электроэнергии;
  • надёжность;
  • дешевизна;
  • лёгкость установки и настройки.

Но у этих датчиков есть один существенный недостаток: они могут контролировать только один (верхний) уровень, который зависит от места монтажа, и регулировать его, если и можно, то в очень небольших пределах. В продаже такой клапан может называться «кран поплавковый для ёмкостей».

Электрические датчики

Электрический датчик уровня жидкости (поплавковый), отличается от механического тем, что сам он воду не перекрывает. Поплавок, перемещаясь при изменении количества жидкости, воздействует на электрические контакты, которые включены в схему управления. На основании этих сигналов автоматическая система контроля принимает решение о необходимости тех или иных действий. В простейшем случае такой датчик имеет поплавок. Этот поплавок воздействует на контакт, через который происходит включение насоса.

В качестве контактов чаще всего применяют герконы. Геркон - это стеклянная герметичная колба с контактами внутри. Переключение этих контактов происходит под действием магнитного поля. Герконы имеют миниатюрные размеры и легко размещаются внутри тонкой трубки из немагнитного материала (пластик, алюминий). По трубке под действием жидкости свободно перемещается поплавок с магнитом, при приближении которого контакты срабатывают. Вся эта система устанавливается вертикально в резервуар . Меняя положение геркона внутри трубки, можно регулировать момент срабатывания автоматики.

Если нужно следить за верхним уровнем в резервуаре, то датчик устанавливают вверху. Как только уровень опустится ниже установленного, контакт замкнётся, насос включится. Вода начнёт прибавляться, и когда уровень воды дойдёт до верхнего предела, поплавок вернётся в исходное состояние, и насос отключится. Однако на практике такую схему применять нельзя. Дело в том, что датчик срабатывает при малейшем изменении уровня, вслед за этим включается насос, уровень поднимается, и насос отключается. Если расход воды из ёмкости меньше , чем подача, возникает ситуация, когда насос постоянно включается и отключается, при этом он быстро перегревается и выходит из строя.

Поэтому датчики уровня воды для управления насосом работают иначе. В ёмкости располагают минимум два контакта. Один отвечает за верхний уровень, он отключает насос. Второй определяет положение нижнего уровня, при достижении которого насос включается. Таким образом, значительно сокращается число пусков, что обеспечивает надёжную работу всей системы. Если разница уровней небольшая, то удобно использовать трубку с двумя герконами внутри и один поплавок, который их коммутирует. При разнице больше метра применяют два отдельных датчика, установленных на требуемых высотах.

Несмотря на более сложную конструкцию и необходимость схемы управления, электрические поплавковые датчики позволяют полностью автоматизировать процесс управления уровнем жидкости.

Если через такие датчики подключить лампочки , то их можно использовать для визуального контроля количества жидкости в резервуаре.

Самодельный поплавковый выключатель

Если у вас есть время и желание, то простейший поплавковый датчик уровня воды можно сделать своими руками, и расходы на него будут минимальны.

Механическая система

Для того чтобы максимально упростить конструкцию, в качестве запирающего устройства будем использовать шаровый клапан (кран). Хорошо подойдут самые маленькие клапаны (полудюймовые и меньше). Такой кран имеет ручку, которой он закрывается. Для переделки его в датчик необходимо удлинить эту ручку полоской металла. Полоска крепится к ручке через просверлённые в ней отверстия соответствующими винтами. Сечение этого рычага должно быть минимальным, но при этом он не должен изгибаться под действием поплавка. Длина его около 50 см. Поплавок крепится на конце этого рычага.

В качестве поплавка можно использовать двухлитровую пластиковую бутылку от газировки. Бутылка наполовину заполняется водой.

Проверить работу системы можно, не устанавливая её в резервуар. Для этого установите кран вертикально, а рычаг с поплавком поставьте в горизонтальное положение. Если все сделано правильно, то под действием массы воды в бутылки, рычаг начнёт двигаться вниз и займёт вертикальное положение, вместе с ним провернётся и ручка клапана. Теперь погрузите устройство в воду. Бутылка должна всплыть и повернуть ручку клапана.

Так как клапаны различаются размерами и усилием, которое нужно приложить для их переключения, возможно, нужно будет провести настройку системы. В случае если поплавок не может провернуть клапан, можно увеличить длину рычага или взять бутылку большего объёма .

Монтируем датчик в ёмкости на необходимом уровне в горизонтальном положении, при этом в вертикальном положении поплавка клапан должен быть открыт, а в горизонтальном - закрыт.

Датчик электрического типа

Для самостоятельного изготовления датчика этого типа, кроме обычного инструмента, понадобится:

Последовательность изготовления следующая:

При изменении уровня жидкости вместе с ней перемещается и поплавок, который действует на электрический контакт для контроля уровня воды в баке. Схема управления с таким датчиком может иметь вид, представленный на рисунке. Точки 1, 2, 3 — это точки подключения провода, который идёт от нашего датчика. Точка 2 — это общая точка.

Рассмотрим принцип действия самодельного устройства. Допустим, в момент включения резервуар пуст, поплавок находится в положении нижнего уровня (НУ), этот контакт замыкается и подаёт питание на реле (Р).

Реле срабатывает и замыкает контакты Р1 и Р2. Р1 — это контакт самоблокировки. Он нужен для того, чтобы реле не отключилось (насос продолжал работать), когда вода начнёт прибывать, и контакт НУ разомкнётся. Контакт Р2 подключает насос (Н) к источнику питания.

Когда уровень поднимется до верхнего значения, сработает геркон и разомкнёт свой контакт ВУ. Реле будет обесточено, оно разомкнёт свои контакты Р1 и Р2, и насос отключится.

С уменьшением количества воды в резервуаре поплавок начнёт опускаться, но пока он не займёт нижнее положение и не замкнёт контакт НУ, насос не включится. Когда это произойдёт, цикл работы повторится заново.

Вот так работает поплавковый выключатель контроля уровня воды .

В процессе эксплуатации необходимо периодически очищать трубу и поплавок от загрязнений. Герконы выдерживают огромное количество переключений, поэтому такой датчик прослужит долгие годы.

На изготовление блока управления насосом подтолкнула неидеальность нашего деревенского ЖКХ - а именно проблема с водоснабжением. То трубы у них прорывает, то насос на насосной сгорает и так далее. В результате этого у дома пробурена скважина и помещен в нее вибрационный насос типа «Малыш», а в подвале дома установлены емкость из нержавейки на 250л и компрессорная станция, поддерживающая давление в водопроводе дома. Но возникла проблема – поддерживать уровень воды в емкости. В Интернете ничего понравившееся не нашел и стал делать прибор под свои запросы. Стал искать датчики уровня и нашёл вот такие (см. фото датчика).

В качестве варианта управления насосом в скважине решил придумать что-то на контроллере, а заодно немного освоить, так как была нужна многорежимность. За основу был взят микроконтроллер ATtiy2313 и разработана такая вот схема (для лучшего качества смотрите вложение в формате splan7). Схема управления насосом:


Писалась на ассемблере, скачать можно здесь в архиве. Данная схема позволяет управлять насосом в 3-х режимах (выбираются кнопкой «Режим»):
1) Режим «Баня» - включение насоса от кнопки «Вкл/Выкл» - это для того, чтобы заливать воду напрямую из скважины в баню, ну или машину помыть.
2) Режим «Лето» - поддержание уровня воды в емкости с использование датчиков уровня (при достижении уровня контакты датчика замыкаются)
3) Режим «Зима» - долив воды (кнопка Вкл/Выкл) в емкость до уровня «Max» при уровне ниже «Min». Режим введен для того, что при зимних морозах вода в шланге замерзает и, чтобы включить насос в скважине, шланг надо сначала разморозить горячей водой.


Дисплей прикрутил из соображений удобности, сначала хотел светодиоды, но домашним не объяснишь какой огонек что значит, памяти не хватит). На первой строке дисплея выводится информация с названием режима, на второй – такая информация как «Работает насос», «Насос отключен» и «Уровень минимум» для зимнего режима. В итоге собранное устройство управления насосом выглядит следующим образом:


Для удобности добавил включение подсветки дисплея примерно на 8 секунд при нажатии любой кнопки. Питание 12 вольт и реле-повторители особо здесь не нужны. Установил их из-за большой длины кабелей (почти 15 метров) до датчиков уровня. Автор схемы: skateman.

Обсудить статью УПРАВЛЕНИЕ НАСОСОМ

Владельцы индивидуальных строений возводят около своих жилищ колодцы или артезианские скважины, которые обеспечивают их водой.

Еще несколько десятков лет назад ее носили ведрами. Однако мы живем в то время, когда система автоматизации стала доступной для простого человека.

Она способна значительно облегчить тяжелый физический труд, высвободить время для продуктивной интеллектуальной деятельности.

В публикуемой статье подобраны советы домашнему мастеру по изготовлению простого автомата управления водяным насосом на основе доступной микросхемы К561ЛА7. Он хорошо справляется с водоснабжением частного дома. Его несложно изготовить своими руками. Излагаемый материал дополняется поясняющими картинками, схемами и видеороликом.


Микросхема К561ЛА7 в качестве основного элемента логики

Ее производство было широко налажено во времена СССР. Конструктивным исполнение стал пластмассовый корпус с двумя рядами четырнадцати выводов: по 7 штук с каждой стороны.

В основу работы логики управления микросхемы КМОП структуры заложены четыре одинаковых элемента с двумя входами, работающими по принципу «И-НЕ».

Как сделать автоматику насосной станции

В статье рассматривается вопрос, когда водоснабжение дома уже организовано, то есть имеется колодец с водой и в нем смонтирован электрический насос, способный создавать необходимый напор для водоподъема.

Нам остается спланировать схему его управления в автоматическом режиме и выполнить ее монтаж отдельным блоком. Для этого потребуется и небольшой комплект электронных деталей.

Основные принципы работы силовой части

Управление насосом может проводиться двумя способами:

  1. в ручном режиме;
  2. автоматически.

Особенности подключения питания

Предлагаемый автомат предусматривает изготовление блока автоматики в виде отдельного корпуса, подключаемого в разрыв питания силовой цепи ручного режима.

Это означает, что обычный водяной насос, например, бюджетная модель «Ручеек», включается в работу после того, как вилка шнура его питания вставляется в розетку и на нее подается напряжение включением .

На блоке автоматики тоже делается шнур питания с вилкой и выходная розетка, от которой будет подаваться напряжение на насос. Это позволяет в любой момент перевести схему на работу в ручном режиме для того, чтобы выполнить профилактику или ремонт схемы управления.

Как контролируется уровень воды

Логическая часть микросхемы автоматики постоянно сканирует состояние датчиков. Они выполнены простыми металлическими электродами в виде стержней из проволоки со слоем изоляции для НП и ВП (внизу она снята), а для ОП - оголенный металл: нержавейка или алюминий. Их располагают на разных уровнях.

Нижнее положение воды в резервуаре оценивает датчик НП, а верхнее - ВП. Общий электрод ОП расположен так, что охватывает всю контролируемую область работы.

Подобное размещение позволяет микросхеме логики автомата определять наличие воды в резервуаре по прохождению токов, создаваемых приложенными потенциалами к электродам через жидкость. За счет этого судят об уровне:

  • верхнем - когда токи протекают между НП-ОП и ВП-ОП;
  • среднем - ток имеется только в цепи НП-ОП;
  • нижнем - тока нет нигде.

Особенности крепления блока

Подобную схему я собрал соседу в гараж. У него там сделана яма для хранения овощей. Место расположения около горы оказалось не совсем удачным. Весной при таянии снега, летом и осенью в дождь вода способна затопить подвальное помещение и ему приходится ее откачивать.

Собранная схема автоматики значительно облегчила управление насосом. Она смонтирована в корпусе от старого электронного блока с возможностью установки на столе, стеллаже или стационарном креплении на стене. Хозяин просто поставил прибор на полку, расположенную на двухметровой высоте и подключил его в сеть.

Автоматика успешно работала два года. Затем хозяин случайно задел за корпус и уронил прибор на бетонный пол. Внутри блока произошло короткое замыкание, сгорел понижающий трансформатор и микросхема К561ЛА7.

Монтаж системы автоматики и ее крепление выполняйте надежно. Сразу исключайте возможность случайного падения и повреждения оборудования любыми способами. Обращайте внимание на .

Электронная схема

Для ее реализации используется микросхема К561ЛА7. Под нее создаются цепи:

  • питания;
  • контроля уровней воды датчиками;
  • светодиодной индикации;
  • управления коммутационным аппаратом.


Схема питания

Обратим внимание на:

  • трансформатор;
  • диодный мост;
  • стабилизатор напряжения.
Трансформатор

Для питания электроники потребуется понижающий трансформатор 220/10-15 вольт с током от 60 мА или выше. Его можно намотать самостоятельно по методике, расписанной мной » или взять от старого лампового телевизора марки ТВК110Л. Также подобные модели не сложно купить через интернет в Китае или другой стране.

Диодный мост

Выбор КЦ405Е с допустимым током выпрямления 1000 мА в схеме приведен как пример. Вполне можно обойтись мостиком с уменьшенными номиналами или спаять диодную сборку из других доступных полупроводников с меньшей мощностью. Микросхема К561ЛА7 и подключенные к ней цепи управления не создают больших нагрузок.

Стабилизатор напряжения

Полупроводниковая сборка КРЕН8Б предназначена для стабилизации питания логической микросхемы на 12 вольт. Она выпускается в едином корпусе, широко применяется в радиоэлектронных устройствах.

Ее вполне можно заменить самодельным стабилизированным блоком питания на биполярных транзисторах, но особого смысла заниматься этим вопросом я не вижу.

Схема контроля уровня воды

Способ подключения

Соединение электродных датчиков с входами логической микросхемы осуществляется проводами. Для их прокладки удобно монтировать две цепи:

  1. внутреннюю в корпусе блока автоматики;
  2. внешнюю к электродам.

Чтобы их соединить на корпусе прибора устанавливают клеммник любой доступной конструкции. Во внешней цепи необходимо хорошо выполнить изоляцию проводов, защитить места пайки от попадания влаги и воздействия коррозии.

Откачивание воды из резервуара

Положение перемычки J1, выделенной на электронной схеме автоматики коричневым цветом, определяет логику откачивания насосной станции. Ставим ее в позицию 1-2.

Не стану полностью описывать работу электроники, а на возникающие вопросы отвечу в комментариях. Просто кратко укажу, что при уровне воды выше верхнего положения логика подает сигнал на откачку, а насос будет работать до тех пор, пока не уберет воду так, что осушит, разорвет цепь между нижним и общим датчиками.

Когда вода снова заполнит резервуар, дойдя до верхнего уровня, то насос автоматически повторит только что описанный цикл.

Закачивание воды внутрь резервуара

Перемычка J1 устанавливается в позицию 2-3. Насос работает на заполнение емкости от сухого состояния до верхнего уровня и прекращает закачку на нем. При осушении емкости цикл возобновляется.

Силовая схема подключения напорной и сливной магистрали насоса должна соответствовать выбранному режиму управления и положению перемычки J1 в блоке автоматики.

Схема светодиодной индикации

Светодиоды можно монтировать любые, однако выбранные с более ярким свечением будут заметнее.

Горение светодиода HL1 свидетельствует о подаче напряжения на насос, то есть о его включении, а HL2 - на схему питания всего блока.

Схема управления силовым выходным контактом

Оптопара U1 обеспечивает гальваническую развязку цепей управления, воды и симистора VS1, подающего питание 220 вольт на насос. Технические характеристики КУ208Г обеспечивают управление электродвигателями мощностью до двух киловатт, что обычно достаточно для бытовых целей.

Варианты изменения силового каскада

Для подключения более мощных электродвигателей потребуется применять симисторы, выдерживающие повышенные нагрузки.

Альтернативным решением схемы является отказ от симистора и применение реле или магнитного пускателя. С этой целью необходимо заменить транзисторный ключ VT1 более мощным. Например, допустимо собрать составной транзистор из двух: КТ315 + КТ815 или их аналогов. Для такого подключения используют схему Дарлингтона.

Она станет управлять обмоткой реле, подавать на нее напряжение.

Выходной контакт реле будет пропускать через себя ток нагрузки электродвигателя насоса. Чтобы увеличить его работоспособность рекомендуется все свободные контакты подключить параллельно, обеспечить их одновременное срабатывание.

При задействовании в схеме электроснабжения реле или пускателя необходимо уточнить мощность блока питания и характеристики понижающего трансформатора: возможно, его придется заменять усиленной моделью.

Стоит заметить, что собранная по любому из вариантов схема автоматики насоса работает сразу без необходимости сложной наладки. Главное условие: исключить ошибки при ее монтаже. Сборку блока автоматики допустимо выполнять навесным методом. Но лучше использовать печатную плату.

Зачастую случается мало иметь только насос дл откачки или пополнения воды, еще необходимо и править им, то есть включать и включать вовремя. Все бы ничего если подобные процессы у вас запланированы, а если нет, то как же быть? Произнесём, у вас есть погреб, где вода прибывает… Или обратная ситуация. Есть бак, какой должен быть всегда полный, готов для полива. В течение дня вода согревается, а вечерком вы поливаете. Так вот, за тем и другим необходимо постоянно следить, а это все время, заботы, ваши труды. Но наш век, такие задачи уже решаются на раз-два, то есть можно автоматизировать процесс. В итоге, автоматика будет все выполнять за вас, накачивать или откачивать воду, а вам лишь останется весьма редко следить за ней, проверять ее работоспособность. Что же, наша статья как раз и будет отдана такой теме как реализация схемы по откачки или накачке воды, дальше мы поговорим об этом более подробно и предметно.

Схема управления (отключения) насосом на откачку воды по степени

Начнем мы со схемы по откачке воды, то есть когда перед вами стоит задача откачивать воду до определенного степени, а затем отключать насос, чтобы он не работал на холостом ходу. Взгляните на схему ниже.

Собственно такая принципиальная электрическая схема способна обеспечить откачку воды, до заданного степени. Давайте разберем принцип ее работы, что здесь и зачем. Итак, представим что вода пополняет наш резервуар, не значительно что это ваше помещение, погреб или бак… В итоге, когда вода доходит до верхнего геркона SV1, то на катушку прабольшего реле Р1 подается напряжение. Его контакты замыкаются, и через них происходит параллельное подключение геркону. Таким манером реле самоподхватывается. Также включается и силовое реле Р2, которое коммутирует контакты насоса, то есть насос включается на откачку. Далее уровень воды начинает понижаться и доходит до геркона SV2, в этом случае замыкается он и подает позитивный потенциал на обмотку катушки. В итоге, на катушке с двух сторон оказывается позитивный потенциал, ток не идет, магнитное поле реле ослабевает — реле Р1 отключается. При отключении Р1 отключается и подача столы для реле Р2, то есть насос тоже перестает откачивать воду. В подневольности от мощности насоса, вы можете подобрать реле на необходимый вам ток.
Мы ничего не произнесли о резисторе 200 Ом. Он необходимо для того, чтобы в процессе включения геркона SV2 не случилось короткого замыкания с минусом, через контакты реле. Резистор лучше итого подобрать такой, чтобы он позволял уверенно срабатывать реле Р1, но был при этом максимально большенного возможного потенциала. В нашем случае это было 200 Ом. Еще одной особенность схемы является применение герконов. Их плюс при применении очевиден, они не контактируют с водой, а значит, на электрическую схему не будут воздействовать возможные изменения токов и потенциалов при различных жизненных ситуациях, будь то вода соленая или нечистая… Схема будет работать всегда стабильно и «без осечек».
Что же, теперь подавайте разберем обратную ситуацию, когда необходимо воду наоборот закачивать в бак и отключать при рослом уровне.

Схема управления (отключения) насосом на налив воды по степени

Если вы охватите нашу статью всю бегло и разом своим взором, то заметите, что второй схемы мы просто напросто в статье и не привели, кроме той, что рослее. На само деле, это само собой разумеющийся факт, ведь чем по сути выделяется схема откачивания от схемы накачивания, разве что тем, что герконы расположены одинешенек снизу второй внизу. То есть если переставить местами герконы, или переподключить контакты к ним, то одна схема обратиться в другую. То есть резюмируем, что для того чтобы переделать вышеприложенную схему в схему по накачке воды, поменяйте пунктами герконы. В итоге, насос будет включать от нижнего датчика – геркона SV1, а отключаться на верхнем степени от геркона SV2.

Реализация установки герконов в качестве концевых датчиков для срабатывания насоса в подневольности от уровня воды

Кроме электрической схемы, вам необходимо будет сделать и конструкцию обеспечивающую замыкание герконов, в подневольности от уровня воды. Мы со свой стороны можем предложить вам парочку вариантов, какие будут удовлетворять таким условиям. Взгляните на них ниже.

В первом случае реализована конструкция с использованием нити, троса. Во втором жесткая конструкция, когда магниты введены на стержне, плавающем на поплавке. Описывать элементы каждой из конструкций особого резона нети, здесь в принципе и так все предельно понятно.

Подключение насоса по схеме срабатывания в подневольности от уровня воды в баке – подводя итоги

Самое главное, это то, что эти схема очень проста, не требует наладки и повторить ее может утилитарны любой, даже не имея опыта работы с электроникой. Второе, схема весьма надежная и потребляет минимальную мощность в режиме ожидания, так как все ее цепи разомкнуты. Это значит, что потребление будет ограничиваться лишь утратами тока в блоке питания, не более.

Диммер, схемы подключения и его разновидности Таблица соответствия мощностей по освещенности светодиодных, люминесцентных, галогенных и ламп накаливания Как найти и изменить, удалить программы из Автозагрузки в Windows 8 Соотношения сторон телевизора Программа для записи телефонных разговоров для устройств Android