Основные требования к элементам системы содк. Содк в тепловой сети. пустые растраты или незаменимый элемент Что такое содк

Причины превышения влажности, могут быть следующими:

  • Влагу пропускает наружный защитный слой;
  • Просачивание теплоносителя в местах разрушения стальной части трубопровода вследствие коррозионных процессов либо дефектов сварных соединений.

Использование системы оперативного дистанционного контроля (СОДК)

В соответствии с пунктом 4.24 ГОСТ 30732-2006 изолированные трубы и изделия должны быть оснащены проводниками СОДК. Следовательно, установка СОДК обязательна на трубопроводах, как с внешней стальной оцинкованной оболочкой, так и с защитным слоем из полиэтилена.

Обычно, по согласованию с заказчиком, в случае надземной прокладки трассы, система ОДК может не монтироваться, так как участки с повышенной влажностью можно обнаружить визуально, без помощи детекторов. Также, по согласованию с заказчиком, система ОДК не устанавливается при подземной прокладке теплотрассы, если по тем или иным причинам наличие системы ОДК не отражается в проекте.

Состав СОДК

Обычно система ОДК состоит из следующих элементов:

  • Медные проводники;
  • Концевые и промежуточные элементы трубопровода с кабелем вывода;
  • Соединительный кабель;
  • Коммутационный терминал для подсоединения устройств выявления повреждений;
  • Детектор повреждений;
  • Импульсный рефлектометр.

Медные проводники СОДК

В соответствии с пунктом 5.1.9 ГОСТ 30732-2006 под покровным слоем тепловой изоляции труб диаметром до 426 мм располагаются два проводника системы ОДК. Проводники состоят из низколегированной мягкой меди марки ММ сечением 1,5 мм2. Проводники располагаются параллельно оси трубы в плоскости одного сечения на расстоянии (20 ± 2) мм от стальной трубы.

Прикрепленные к стальной трубе центрирующие опоры используются в качестве мест фиксации проводников. Расстояние между центрирующими опорами должно быть от 0,8 до 1,2 м. Если продольный шов стальной трубы находится в верхней точке, расположение кабелей должно соответствовать положениям часовой стрелки «3» и «9 часов». При использовании трубы диаметром ≥ 530 мм применяются 3 проводника, фиксируемые в положениях «3», «9», «12 часов».

Главный сигнальный проводник размещается с правой стороны, по направлению подачи теплоносителя к потребителю, согласно п. 4.59 СП 41-105-2002. Второй сигнальный провод является транзитным. Отличие сигнального проводника от транзитного заключается в том, что сигнальный проводник заходит во все ответвления теплотрассы, повторяя весь ее контур, а транзитный - по кратчайшему пути между начальной и конечной точкой.

Детектор повреждений

Детектор повреждений предназначен для контроля состояния трубопровода на всем измеряемом участке. Устройство сможет обнаруживать следующие неисправности и недостатки:

  • Разрыв сигнальных проводников;
  • Замыкание сигнального проводника на стальную трубу;
  • Намокание изоляционного слоя.

Детектор не определяет точное место дефекта, а также причину.

Принцип работы детектора следующий. Пенополиуретан характеризуется высоким электрическим сопротивлением. Сопротивление изоляционного слоя ППУ при попадании влаги значительно уменьшается. Электрическое сопротивление измеряется между проводниками системы ОДК и стальной трубой. В случае, если значение сопротивления будет ниже порогового, то детектор выдает сигнал «намокание». Также данный сигнал может сработать, когда сигнальный провод касается металлической трубы.

Детектор также измеряет сопротивление медных проводников. В случае, если сопротивление электрической цепи превышает предельный параметр, детектор выдает сигнал «обрыв». Детекторы повреждений бывают стационарные и переносные.

Импульсный рефлектометр (Локатор)

Импульсный рефлектометр (локатор) является переносным прибором и предназначен для поиска местоположений дефектов. Прибор выявляет те же типы неполадок, что и детектор повреждений. Принцип работы рефлектометра основан на локационном измерении. Вследствие монтажа проводников индикаторов относительно стальной трубы правильным образом, при подаче на них высокочастотных электрических импульсов, и вследствие электрических свойств пенополиуретана образуется волновое сопротивление, которое является постоянным на всей протяженности трубы. Локация электрическими импульсами небольшой энергии происходит беспрепятственно.

Намокание изоляционного слоя приводит к изменению величины волнового сопротивления, а, следственно, затрудняет прохождение импульсов. Локатор фиксирует отраженные от влажной изоляции импульсы. Импульсный рефлектометр позволяет определить длину дистанции до места дефекта.

На изменение волнового сопротивления, помимо намокания, могут влиять:

  • Изменение сечения изоляционного слоя;
  • Места присоединения муфт;
  • Места обрыва проводников;
  • Конечная точка сигнальной линии.

Контрольно-монтажный тестер

Тестер предназначен для измерения ППУ изоляции и сопротивления петли сигнальных проводов. С помощью тестера, возможно идентифицировать те же дефекты, что и с помощью детектора.

Тестер обычно используют для проверки изделий с системой ОДК непосредственно при их производстве, монтаже, эксплуатации инженерных сетей.

Коммутационный терминал

В соответствии с пунктом 4.69 СП 41-105-2002 для соединения сигнальных проводников и подключения приборов контроля необходимо использовать терминалы следующих типов:

  • В конечной контрольной точке трубопровода - концевой терминал;
  • В конечной контрольной точке трубопровода, имеющей выход на стационарный детектор - Концевой терминал с выходом на стационарный детектор;
  • В промежуточной контрольной точке трубопровода - промежуточный терминал;
  • В точке контроля на границе участка - двойной концевой терминал;
  • В месте слияния нескольких отрезков трубопровода - объединяющий терминал;
  • В точках, где нет изоляционного слоя, для подсоединения стыковочного провода - проходной терминал. Ограничение по максимальной длине провода составляет 10 м.

Концевые терминалы монтируются в конечных контрольных точках тепловой сети, промежуточные (один из них может соединяться со стационарным детектором) - на прямолинейных отрезках. Точки контроля необходимо предусматривать на расстоянии не более 300 м друг от друга. Если трубопровод имеет протяженность до 100 м, его оснащают 1 концевым терминалом. В таком случае возможна закольцовка кабелей СОДК в противоположной точке трубопровода. Начальные точки боковых ответвлений протяженностью порядка 30-40 м необходимо оборудовать промежуточными терминалами без учета местоположения других контрольных точек основного трубопровода.

Монтаж СОДК в местах стыка

Перечень материалов для монтирования системы оперативного дистанционного контроля:

  • Лента для крепления (крепеж на стальную трубу держателей ОДК);
  • Гильзы медные луженые - обжимные гильзы с поверхностным гальваническим лужением для соединения проводников системы ОДК. Соединение возможно проводить «встык» и «внахлест»;
  • Держатели ОДК.

Технические параметры

В соответствии с пунктом 5.1.10 ГОСТ 30732-2006 сопротивление между стальной трубой и проводниками системы ОДК должно быть не менее 100 МОм при испытательном напряжении не менее 500 В.

В соответствии с пунктом 3.9 СП 41-105-2002 сопротивление медных проводников-индикаторов должно быть в пределах 0,012-0,015 Ом/м. Сопротивление изоляции 3,3 кОм/м.

В соответствии с пунктом 4.57 СП 41-105-2002 пороговое сопротивление медных проводников-индикаторов должно быть 200 Ом при максимальной длине 5000 м. При превышении данного параметра детектор выдает сигнал «Обрыв». Пороговое сопротивление изоляции должно соответствовать 1-5 кОм. Если параметр сопротивления изоляции будет ниже, то детектор выдает сигнал «намокание».

Что представляют собой трубы в оболочке ППУ ПЭ с ОДК? Это стальные цельнотянутые, электросварные, водогазопроводные и другие изделия, изготавливаемые в соответствии с техническими требованиями ГОСТ и отраслевыми нормативами, действующими на территории страны – производителя. Основная защита металлической поверхности обеспечивается при помощи специальной оболочки, изготовленной из пенополиуретана. Этот материал является химически нейтральным и экологически чистым. Дополнительная защита представлена тонкой полиэтиленовой оболочкой.

Для того, чтобы легко определять, где находится повреждённый участок, применяется система дистанционного контроля. Этот простой механизм в виде проводов, проходящих сквозь оболочку, отлично зарекомендовал себя на практике. В настоящее время система ОДК ППУ труб активно эксплуатируется при прокладке магистральных теплосетей в России, СНГ и дальнем зарубежье. Применяется она в трубопроводах с полиэтиленовой защитной оболочкой (ПЭ) и с оцинковкой (ОЦ) поверх пенополиуретановой защиты. Так же в качестве материала вам может пригодиться .


Стоимость изделий с ОДК в ПЭ и ОЦ изоляции
Габариты Изделие с ОДК, руб.
Ø Стенка, мм ПЭ ОЦ
32-125 3,0 617 575
40-125 3,0 625 583
57-125 3,5 627 600
57-140 3,5 766 700
76-140 3,5 780 764
76-160 3,5 881 855
89-160 3,5 890 862
89-180 3,5 1033 1002
108-180 3,5 1067 1033
108-200 3,5 1248 1191
133-200 4,0 1336 1275
133-225 4,0 1587 1485
133-250 4,0 1880 1893
159-250 4,5 1967 1974
159-280 4,5 2420 2299
219-315 6,0 3233 2998
219-355 6,0 3927 3558
273-400 6,0 4885 4424
273-450 6,0 5676 5181
325-400 7,0 5265 4781
325-450 7,0 6056 5538
325-500 7,0 7091 6369
426-500 7,0 6933 6155
426-560 7,0 8373 7813
426-630 7,0 10378 9304

Трубы ППУ СОДК

Какими ключевыми преимуществами обладает ППУ изоляция с ОДК, чем она лучше стандартной оболочки? Если сравнивать со стальной трубой, защита которой реализована при помощи минеральной ваты, то разница очевидна. Срок службы увеличивается с 8 – 10 лет, до 25 – 35 лет, в зависимости от сложности условий эксплуатации. Главная страница раздела .

Система оперативно-дистанционного контроля (СОДК) используется для постоянного или периодического контроля состояния ППУ слоя и помогает обнаружить места протекчи или увлажнения слоя изоляции. Возникновение влажных участков свидетельствует о наличии протечки теплоносителя, в следствии повреждения или дефекта. Присутствие системы ОДК помогает обеспечить длительную и безаварийную работу теплотрасс. Согласно ГОСТ 30732-01, система ОДК является обязательным элементом трубопроводов с применением ППУ изоляции.

Изготовленные в соответствии с ГОСТ, ОДК ППУ обеспечат надёжную и безопасную эксплуатацию трубопроводных систем. В случае поломки, эксперт, используя специальный прибор, подключаемый к выводу контактов, легко определит на каком участке следует провести ремонт.

Цена трубы ППУ с ОДК

Свяжитесь с представителями компании «Региональный дом металла», чтобы узнать наличие и количество товара на складах. Также у менеджера можно уточнить актуальную стоимость трубы ППУ ПЭ с ОДК и аналогов с ОЦ покрытием. Цена СОДК составляет менее 0,5-1% от суммарной стоимости проекта, в зависимости от объема, а пользы дает несоизмеримо больше.

Если же вас интересует нечто иное, например толстостенная труба, то вам сюда: .

Специалисты подтверждают, что изоляция ППУ ПЭ с ОДК позволяет обслуживающим компаниям экономить огромные средства на эксплуатации и ремонте. Система контроля даёт возможность точно определить, на каком участке трубопровода имеются повреждения. Теперь не придётся перекапывать сотни метров грунта в поисках источника проблемы.

Система оперативного дистанционного контроля (СОДК) предназначена для контроля состояния теплоизоляционного слоя пенополиуретана (ППУ) предизолированных трубопроводов и обнаружения участков с повышенной влажностью изоляции. Увеличение влажности тепловой изоляции может быть вызвано либо проникновением влаги через внешнюю полиэтиленовую оболочку трубопровода, либо за счет утечки теплоносителя из стального трубопровода вследствие коррозии или дефектов сварных соединений. Отсутствие системы ОДК при бесканальной прокладке влечет за собой возможность коррозии полного сечения трубопровода в зоне негерметичного стыка и противоречит требованиям безопасной эксплуатации теплосетей.

1 . Состав системы СОДК

Система ОДК включает:

  • Сигнальные медные проводники в теплоизоляционном слое трубопроводов, проходящие по всей длине теплосети:

Основной сигнальный проводник (условно луженый);

Транзитный проводник

  • Терминалы для подключения приборов и коммутаций сигнальных проводников в точках контроля.
  • Кабели для соединения сигнальных проводников в изолированных трубах с терминалами в точках контроля, а также для соединения сигнальных проводников на участках трубопроводов, где установлены неизолированные элементы трубопровода (запорная арматура и т.д.), через элементы с герметичными кабельными выводами.
  • Детектор (стационарный или переносной).
  • Локатор повреждений.

Контроль состояния изоляции трубопроводов должен осуществляться с помощью стационарных или переносных детекторов.

Состояние СОДК должно оцениваться по следующим параметрам:

1. Целостность сигнальных проводников, образующих в нормальном состоянии замкнутую электрическую цепь (петлю).

2. Сопротивление изоляции между сигнальными проводниками и стальным трубопроводом.

Сигнальные проводники должны устанавливаться внутри ППУ изоляции каждого трубопровода. Сопротивление сигнальных проводников должно быть в пределах 0.012 — 0.015 Ом на погонный метр.

Для коммутации сигнальных проводников и подключения приборов контроля необходимо использовать терминалы следующих типов:

■ концевой терминал — в точках контроля на концах трубопровода;

■ концевой терминал с выходом на стационарный детектор — в точке контроля на конце трубопровода, в которой предусмотрен стационарный детектор;

■ промежуточный терминал — в промежуточной точке контроля трубопровода;

■ двойной концевой терминал — в точке контроля на границе проекта;

■ объединяющий терминал — в тех точках контроля, где необходимо объединить в единую петлю двух (трех) участков трубопроводов;

■ проходной терминал — для подключения соединительных кабелей в местах разрыва ППУ изоляции (в тепловых камерах, в подвалах домов и т.п.) и при длине соединительного кабеля более 10 метров.

Определение места неисправности СОДК (увлажнение или обрыв сигнального проводника) осуществляется локатором повреждений, представляющим собой импульсный рефлектометр.

Локатор повреждений:

  • должен обеспечивать возможность определения вида и мест дефектов с точностью не менее 1 % от измеряемой длины сигнального проводника;
  • иметь дальность измерений — не менее 3000 м;
  • Для регистрации результатов измерений локатор должен иметь внутреннюю память для записи и хранения с объемом не менее 20 рефлектограмм и возможностью обмена данными с персональным компьютером. Допускается использовать рефлектометр с портативным печатающим устройством.

2. Правила проектирования систем ОДК

Проект системы оперативного дистанционного контроля включаете себя:

  • пояснительная записка
  • спецификация используемого оборудования (включая материалы)
  • общие указания, включающие перечень документации для сдачи в эксплуатацию системы контроля, маркировку коверов и терминалов и требования к монтажу системы контроля
  • схема дистанционного контроля
  • монтажная схема теплосети

Схема системы ОДК должна включать в себя:

  • графическое изображение схемы соединения сигнальных проводников
  • характерные точки, соответствующие монтажной схеме:

Ответвления от основного ствола теплотрассы (включая спускники)

Углы поворотов

Неподвижные опоры

Переходы диаметров

Точки контроля (наземные и настенные коверы)

  • таблицу данных по характерным точкам с указанием параметров:

Номера точек

Диаметр трубы на участке

Длина трубопровода между точками по проектной документации (для подающего и обратного трубопровода)

Длина трубопровода между точками по схеме стыков (для основного и транзитного сигнальных проводников для подающего и обратного трубопровода)

  • маркировку на терминалах (на алюминиевых бирках)
  • спецификацию применяемых приборов и материалов.

3. Условные обозначения элементов СОДК

Проектирование систем ОДК необходимо осуществлять с возможностью присоединения проектируемой системы к действующим системам ОДК и планируемым в будущем.

При проектировании систем необходимо предусматривать контроль состояния изоляции разветвленной сети трубопроводов исходя из максимального диапазона действия детектора (пять километров трубопровода).

В качестве основного сигнального провода используется провод, маркированный расположенный справа по направлению подачи воды к потребителю на обоих трубопроводах (условно луженый). Второй сигнальный проводник называется транзитным.

Все боковые ответвления должны включаться в разрыв основного сигнального проводника. Запрещается подключать боковые ответвления к медному проводу, расположенному слева по ходу подачи воды к потребителю (транзитному).

Контроль состояния изоляции должен осуществляться стационарным детектором. При отсутствии возможности подключения стационарного детектора контроль может проводиться с использованием переносного детектора. В точках контроля на концах теплосети устанавливаются концевые терминалы, один из которых может иметь выход на стационарный детектор.

Пример — схема СОДК для участка теплотрассы длиной менее 100 м с любым из детекторов (см. схемы).

Для трубопроводов длиной менее 100 метров допускается установка только одной точки контроля с закольцовкой сигнальных проводников под металлической, заглушкой изоляции на другом конце трубопровода. Некоторые эксплуатирующие организации г. Москвы требуют организации точек контроля с обеих сторон теплотрассы.

Точки контроля необходимо предусматривать через каждые 250 — 300 метров. В указанных точках устанавливаются промежуточные терминалы. В начале боковых ответвлений длиной 30 — 40 метров ставится промежуточный терминал вне зависимости от расположения других точек контроля на основном трубопроводе.

На границах сопрягаемых проектов в местах соединения трасс необходимо предусматривать точки контроля и устанавливать двойные концевые терминалы, которые позволяют объединить или разъединить СОДК этих проектов.

Пример тепловой сети с двойными концевым терминалом, ответвлениями и контролем с двух сторон

В местах разрыва ППУ изоляции (проход трубопроводов через тепловые камеры, подвалы зданий и т.п.) соединение сигнальных проводников осуществляется путем кабельные перемычек через проходные терминалы или с организацией точки контроля с проходным терминалом в наземном ковере.

Установка терминалов с разъемами для коммутации в помещениях с повышенной влажностью (тепловые камеры, подвалы домов и т.п.) не рекомендуется. В таких случаях устанавливаются проходные терминалы.

Примеры тепловой сети:

Схема СОДК с тепловой камерой с наземным ковером

Схема СОДК с проходными терминалами в подвале дома (камере)

Максимальная длина кабеля от трубопровода до терминала не должна превышать 10 метров. В случае необходимости применения кабеля с большей длиной требуется установка дополнительного терминала как можно ближе к трубопроводу.

Установка терминалов в промежуточных и концевых точках контроля осуществляется в наземных или настенных коверах установленного образца. В концевых точках трубопровода допускается установка терминалов в ЦТП. Конструкция ковера должна исключать процесс образования конденсата на элементах терминала, проникновение влаги в терминал и обеспечивать вентиляцию внутреннего объёма ковера. Внутренний объем ковера должен быть засыпан сухим песком от основания до уровня 20 сантиметров до верхнего края. При устройстве коверов на теплотрассах, прокладываемых в насыпных грунтах, необходимо предусматривать дополнительные меры по защите ковера от просадки фунта.

Соединительный кабель от элемента трубопровода с герметичным кабельным выводом до терминала должен прокладываться в оцинкованной трубе ф50 мм. Сварка (пайка) защитной оцинкованной трубы с проложенным в ней кабелем запрещается.

Прокладку соединительного кабеля внутри заданий (сооружений) до места установки терминалов или в месте разрыва тепловой изоляции (в тепловой камере и т.п.) также необходимо осуществлять в оцинкованной трубе ф50 мм, закрепляемой к стене скобами. Внутри зданий допускается применение защитных гофрошлангов.

Схема системы ОДК должна иметь в штампе фамилию и инициалы разработчика и название организации, разработавшей проект. Проект системы ОДК должен быть согласован с той организацией, которая принимает теплотрассу на баланс.

В случае необходимости внесения изменений в схему ОДК данные изменения и должны быть пересогласованы с эксплуатирующей организацией.

4. Правила монтажа системы ОДК

  1. Монтаж СОДК должен проводиться в соответствии с проектной схемой, согласованной с эксплуатирующей организацией.
  2. При изоляции стыков сигнальные проводники смежных элементов трубопроводов должны соединяться посредством обжимных муфточек с последующей пропайкой места соединения проводников. Пайка должна выполняться с использованием неактивных флюсов.
  3. Все боковые ответвления от магистрального трубопровода должны включаться в разрыв основного сигнального проводника магистрального трубопровода. Транзитный сигнальный проводник должен проходить только в магистральном трубопроводе.
  4. При изоляции стыков, находящихся на границах трубопроводов различных фирм-производителей или различных строительных организаций, работы необходимо производить в присутствии представителей данных организаций с составлением акта на выполненные работы, подписанного представителями всех организаций.
  5. В точках контроля соединительные кабели должны присоединяться к сигнальным проводникам через герметичные кабельные выводы.
  6. Конструкция кабельных выводов должна обеспечивать герметичность в течение всего срока службы.
  7. В точках контроля и транзитах в камерах и подвалах домов в качестве соединительных кабелей применяется кабель марки NYM 3×1.5 и NYM 5×1.5 с цветовой маркировкой жил. В условиях низких температур необходимо использовать кабель марки КГХЛ 3×1.5 или КГХЛ 5×1.5.
  8. Соединение жил кабелей в промежуточных точках контроля с сигнальными проводниками в предизолированной трубе должно производиться в соответствии со следующей цветовой маркировкой:

Синий - основной сигнальный проводник, идущий от данной точки контроля по направлению к потребителю.

Коричневый - транзитный сигнальный проводник, идущий от данной точки контроля по направлению к потребителю.

Черный - основной сигнальный проводник, идущий от данной точки контроля в направлении, противоположном подаче теплоносителя.

Чёрно-белый - транзитный сигнальный проводник, идущий от данной точки контроля в направлении, противоположном подаче теплоносителя.

Жёлто-зеленый - контакт на стальной трубопровод («заземление»).

  1. Контакт жёлто-зеленой жилы со стальным трубопроводом должен обеспечиваться с помощью разъемного резьбового соединения (гайка с шайбой на болт, приваренный к стальному трубопроводу).
  2. Соединительные кабели трубопроводов должны иметь маркировки, идентифицирующие соответствующие трубы и кабели.
  3. Подключение соединительных кабелей к терминалам в точках контроля должен выполняться в соответствии с цветовой маркировкой и соответствующей инструкции, обязательно прилагаемой к каждому терминалу.
  4. Монтажные терминалы, устанавливаемые в точках контроля, должны соответствовать классу защиты не ниже IP 54. Терминалы, устанавливаемые в местах с повышенной влажностью (тепловые камеры, подвалы домов с угрозой затопления) должны иметь класс защиты не менее IP 65.
  5. На терминалах должны быть закреплены алюминиевые бирки с маркировкой, определяющей направление измерений.
  6. При необходимости установки в точках контроля кабеля длиной более 10 метров следует устанавливать дополнительный терминал.
  7. Монтаж стационарных детекторов повреждений должен выполняться в соответствии с инструкцией по эксплуатации.
  8. По окончанию монтажа системы ОДК должно проводиться обследование, включающее:
  • измерение сопротивления изоляции каждого сигнального проводника;
  • измерение сопротивления цепи (петли) сигнальных проводников;
  • измерение длины сигнальных проводников и длин соединительных кабелей во всех точках контроля;
  • измерение рефлектограмм сигнальных проводников.

Все результаты изменений вносятся в акт обследования СОДК. Акт сдачи СОДК можно увидеть ниже..pdf»].

5. Правила приемки систем ОДК в эксплуатацию

  1. Приемка систем ОДК должна осуществляться совместно представителям строительной организации и организации, производившей монтаж и наладку системы ОДК, совместно с представителями эксплуатирующей организации.
  2. При приемке в эксплуатацию системы ОДК эксплуатирующей организации должна быть предоставлена следующая документация и оборудование:

Схема дистанционного контроля состояния трубопровода с заполненной таблицей длин трубопровода по участкам (подающий и обратный трубопровод по проектной схеме трубопровода и по схеме стыков);

Схема стыков;

Ситуационный план;

Приборы контроля (детекторы повреждений, локаторы и т.п.) с комплектующими изделиями (если есть) и с технической документацией по их эксплуатации — согласно проекта.

  1. В присутствии представителей эксплуатирующей организации, строительной организации и организации, производившей монтаж и наладку системы ОДК, проводятся:

Измерение омического сопротивления сигнальных проводников;

Измерение сопротивления изоляции между сигнальными проводниками и землей;

Запись рефлектограмм участка теплосети с использованием импульсного рефлектометра для использования в качестве эталонного при эксплуатации;

Проверку правильности настройки контрольных приборов (локаторов, детекторов), передаваемых в эксплуатацию для данного заказа.

  1. Все данные измерений и исходная информация заносятся в акт обследования системы оперативного дистанционного контроля теплотрассы.
  2. Система ОДК считается работоспособной, если сопротивление изоляции между сигнальными проводниками и стальным трубопроводом не ниже 1 МОм на 300 м теплотрассы. Для трубопроводов с длиной, отличающейся от указанной, допустимое значение сопротивления изоляции изменяется обратно пропорциональной длине трубопровода.

Статья расскажет, как работает система ОДК в ПИ-трубах и как сделать ее правильно. Информация полезна тем, кто хочет сэкономить и выполнить монтаж самостоятельно, и тем, кто уже имеет опыт использования такой теплосети, но дистанционный контроль вышел из строя или выполнен некачественно.

Незнание основных принципов работы, неверный монтаж элементов и неумение обращаться с приборами зачастую приводят к тому, что все хорошее считается бесполезным или никому не нужным. Так случилось и с системой оперативного дистанционного контроля тепловых сетей: идея была отличная, а вот реализация как всегда подкачала. Безразличие заказчика с одной стороны и «ответственная» работа строителей с другой привели к тому, что в нашей стране СОДК работает правильно в лучшем случае в 50% построенных трубопроводов, а пользуются ей и вовсе в 20% организаций. Взяв для примера Европу, даже не далекую, допустим Польшу, можно увидеть, что неверная работа системы дистанционного контроля приравнивается к аварии на трубопроводе с безотлагательными ремонтными работами. В нашей же стране гораздо чаще можно увидеть раскопанную посреди зимы улицу в поисках места порыва теплопровода, чем летние профилактические работы бригады электриков. Для того чтобы внести ясность, рассмотрим СОДК в теплосетях с самого начала.

Назначение

Трубопроводы тепловых сетей из поколения в поколение остаются стальными, и основной причиной их разрушения является коррозия. Происходит она из-за контакта с влагой, причем в большей степени подвержена ржавчине наружная стенка металлической трубы. Основной функцией СОДК является контроль сухости изоляции трубопровода. Причем указывается без различия причины как попадание влаги извне из-за дефекта пластиковой трубы-оболочки, так и попадание на изоляцию теплоносителя в результате дефекта стального теплопровода.

При помощи специального инструмента и СОДК можно определить:

  • намокание изоляции;
  • расстояние до промокшей изоляции;
  • непосредственный контакт провода СОДК и металлической трубы;
  • обрыв проводов СОДК;
  • нарушение изоляционного слоя соединительного кабеля.

Принцип работы

В основу работы системы положено свойство воды увеличивать проводимость электрического тока. Используемый в качестве изоляции в ПИ-трубах пенополиуретан в сухом состоянии имеет огромное сопротивление, которое электрики характеризуют как бесконечно большое. При попадании влаги в пену проводимость мгновенно улучшается, и приборы, подключенные к системе, фиксируют снижение сопротивления изоляции.

Области применения

Применять трубопроводы, оснащенные системой оперативного дистанционного контроля, имеет смысл при любой подземной прокладке. Довольно часто, даже зная, что трубопровод имеет дефект и идут значительные потери теплоносителя, определить место порыва визуально практически невозможно. Именно из-за этого в зимний период приходится либо раскапывать всю улицу в поисках течи, либо ждать пока вода сама промоет себе путь наружу. Второй вариант довольно часто заканчивается в сводках новостей заметками о том, что в городе N из-за аварии на тепловых сетях и обвала поверхности земли провалились автомобили, люди или еще что-либо, что имело несчастье находиться рядом.

Не добавляет информативности и нахождение трубопровода в канале. Из-за пара определить точку утечки возможно далеко не всегда и земляные работы все равно будут значительными и долгими. Исключение, пожалуй, составляют лишь большие проходные туннели с коммуникациями, но строят их редко и стоят очень дорого.

Вариант воздушной прокладки трубопроводов, вот то место, где система ОДК не имеет никакого практического смысла. Все течи видно невооруженным глазом и растраты на дополнительный контроль ни к чему.

Строение и структура

ПИ-трубы, используемые в тепловых сетях, состоят из стальной трубы, трубы-оболочки из полиэтилена и вспененного полиуретана в качестве изоляции. В этой пене располагаются 3 медных проводника сечением 1,5 мм 2 с удельным сопротивлением от 0,012 до 0,015 Ом/м. Собирают в цепь провода, расположенные в верхней части, в положении «без 10 мин 2 ч», третий остается незадействованным. Сигнальным или основным считается проводник, расположенный справа по ходу движения теплоносителя. Он заходит во все ответвления и именно по нему определяется состояние труб. Левый проводник — транзитный, его основная функция — создание петли.

Для удлинения кабельных выводов и соединения трубопроводов с точками коммутации используют соединительные кабели. Обычно 3-х или 5-ти жильные с тем же сечением в 1,5 мм.

Сами коммутационные терминалы располагаются в ящиках ковера, устанавливаемых на улице либо в помещениях насосных и тепловых пунктов.

Измерения проводят при помощи специализированных приборов. Обычно это переносной импульсный рефлектометр отечественного производства. Для стационарной установки есть также определенные устройства, однако они являются малоинформативными и в большинстве случаев не используются.

Монтаж

Сборка всех элементов системы происходит после сварки трубопровода. И если большинство работ по строительству теплотрассы выполняется исключительно специалистами и с использованием техники, то при небольших познаниях в области электрики и наличии паяльника, газовой горелки и мегомметра работы по монтажу дистанционного контроля можно сделать и самому. Для верного выполнения следует придерживаться следующей последовательности:

  • проверить целостность проводников в изоляции трубы при помощи прозванивания;
  • удалить пену на глубину 2-3 см вне зависимости от степени ее намокания;

  • аккуратно раскрутить и выпрямить свернутые для транспортировки проводники;
  • установить пластиковые подставки на трубу, закрепить их скотчем;
  • зачистить проводники наждачной бумагой и обезжирить;
  • натянуть проводники в разумных пределах (чрезмерное натяжение может послужить причиной разрыва провода из-за температурного расширения трубы, недостаточное к провисанию проводника и контакту с трубой);
  • соединение и припайка проводников друг к другу (не перепутать сигнальный и транзитный провода между собой);

  • вжать провода в специальные прорези в пластиковых подставках;
  • оценить прочность соединения руками;
  • обезжирить растворителем и высушить при помощи газовой горелки концы труб-оболочек для последующего монтажа муфты;
  • прогрев подготовленных концов до температуры в 60 градусов и установка клея;
  • надвинуть муфту на соединение, предварительно удалив белую защитную пленку, произвести усадку при помощи пламени горелки;
  • просверлить 2 отверстия в муфте для оценки герметичности и последующего запенивания;
  • произвести оценку герметичности: в одно отверстие устанавливается манометр, через другое подается воздух, по удержанию давления происходит оценка качества соединения;

  • отрезать термоусаживаемую ленту;
  • подогреть место на стыке муфта/труба-оболочка и прикрепить один конец ленты;
  • симметрично уложить ленту поверх стыка и закрепить внахлест;
  • подогреть замковую пластину и закрыть ей стык ленты;
  • усадить ленту пламенем горелки;
  • провести повторную опрессовку воздухом как описано выше;
  • смешать пенообразующие компоненты А и Б и залить через отверстие в полость под установленной муфтой;
  • при продвижении пены к отверстию установить дренажную пробку для удаления воздуха;
  • после окончания пенообразования зачистить поверхность муфты от пены и установить вварную пробку;
  • после сбора системы в трубной части нарастить проводники в местах вывода;
  • установить ящики ковера;
  • проложить наращенные проводники в оцинкованных трубах от места вывода на трубе до установленного ящика ковера;
  • установить и подключить коммутационные терминалы в соответствии с проектом;

  • подключить стационарные детекторы;
  • выполнить полную проверку при помощи рефлектометра.

В описании рассмотрен вариант с использованием термоусаживаемых муфт, есть и другая разновидность изоляции стыков — электросварные муфты. В этом случае процесс будет немного сложнее из-за использования электрических нагревательных элементов, но суть останется той же.

При выполнении работ по монтажу системы ОДК есть и наиболее распространенные ошибки. Они редко зависят от того, кто выполнял работу — сам заказчик или строитель. Самая главная из них — это неплотная установка муфт. При отсутствии герметичности уже после первого дождя система может показать намокание. Второй ошибкой является невыбранная пена на стыках: даже выглядевшая визуально абсолютно сухой, она часто несет в себе избыток влаги и влияет на корректную работу системы. После обнаружения того или иного дефекта следует понаблюдать за динамикой и принять решение о том, когда производить ремонт: немедленно или в летний межотопительный период.

Способы ремонта

Ремонт системы ОДК иногда требуется уже на стадии строительства. Рассмотрим несколько частых случаев.

  1. Сигнальный провод сломан на выходе из изоляции.

Следует удалить пену до образования необходимого количества проводника и нарастить длину при помощи припаивания дополнительного провода (можно использовать остатки с других стыков). При проведении спайки следует быть внимательным и не допускать воспламенения изоляции трубопровода.

  1. Провод системы ОДК контактирует с трубой.

Если добраться до места контакта без нарушения целостности оболочки невозможно, следует использовать для соединения в цепь 3-й незадействованный провод вместо дефектного проводника. Если все проводники в результате заводского брака являются непригодными, следует поставить в известность поставщика. В зависимости от его возможностей и вашего желания будет проведена замена трубы либо ремонт с уменьшением стоимости прямо на месте. Если по какой либо причине связь с поставщиком невозможна, самостоятельный ремонт проводят следующим образом:

  • определение места контакта;
  • разрез трубы-оболочки;
  • выборка пены;
  • устранение контакта, при необходимости спайка проводника;
  • восстановление слоя изоляции;
  • восстановление целостности трубы-оболочки при помощи ремонтной муфты или экструдера.

Во время эксплуатации тепловых сетей ремонт связан не столько с восстановлением функционала, сколько с сушкой пены. Причины могут быть самые разные: строительные ошибки при герметизации муфт, разрыв теплопровода, неаккуратные земляные работы вблизи труб и многое другое. При попадании влаги оптимальным вариантом является ее удаление до нормальных показателей сопротивления. Достигается это различными способами: от просушки при раскрытой оболочке до замены изоляционного слоя. Контролируется степень сухости импульсным рефлектометром. После достижения необходимых показателей восстановление целостности оболочки проводится так же, как описано выше.

Заключение

Напоследок хотелось бы выразить надежду, что после прочтения статьи задумаются о необходимости применения системы контроля не только частники, строящие сети к своему производственному зданию или офису, но и службы, вплотную занимающиеся эксплуатацией трубопроводов. Возможно, тогда станет намного меньше несчастных случаев и финансовых потерь при централизованном теплоснабжении городов.

Ольга Устимкина, рмнт.ру

А.А. Александров, технический директор, ООО «Российские мониторинговые системы»,
В.Л. Переверзев, генеральный директор, ЗАО «Санкт-Петербургский Институт Теплоэнергетики», г. Санкт-Петербург

В настоящее время в России при создании новых тепловых сетей бесканальной прокладки (т.е. укладываемых непосредственно в грунт) нормативными документами предписано использовать стальные трубы с индустриальной тепловой изоляцией из пенополиуретана (ППУ) в полиэтиленовой оболочке, оснащенных проводниками системы оперативного дистанционного контроля (СОДК) увлажнения изоляции. Их применение направлено на повышение экономичности и надежности тепловых сетей и основывается на технологиях зарубежных фирм. Технология включает в себя диагностирование, состоящее в определении изменения электрического сопротивления при появлении влаги в ППУ-изоляции между трубой и сигнальным проводником, проложенным вдоль всего трубопровода, и локализацию места увлажнения методом локации.

Такое диагностирование теплопроводов позволяет обнаруживать возникающие в процессе строительства и эксплуатации дефекты, производить локализацию мест их возникновения.

Обнаружение и локализация дефектов может производиться при помощи специальных приборов тремя способами.

1. Переносным детектором для определения наличия и типа дефекта (периодичность - 1 раз в 2 недели). Переносным локатором для локализации места возникновения дефекта (периодичность - по результатам измерений детектором).

2. Стационарным детектором для определения наличия и типа дефекта (периодичность -постоянно 24 часа в сутки). Переносным локатором для локализации места возникновения дефекта (периодичность - по результатам срабатывания детектора с учетом регламентного времени прибытия оператора с локатором).

3. Стационарным локатором для определения наличия и типа дефекта с одновременной локализацией и фиксацией места его возникновения (периодичность - зондирующие импульсы один раз в 4 минуты (постоянно 24 часа в сутки)).

В настоящее время в России, согласно СП 41-105-2002, применяются только два первых

способа определения дефектов тепловых сетей в ППУ-изоляции, оснащенных проводниками ОДК. Эффективность этих способов вызывает много вопросов у специалистов, обслуживающих теплосети, а локализация мест возникновения дефектов при помощи переносных локаторов превращается в трудоемкую операцию, не всегда приводящую к корректным результатам. Чтобы определить причину низкой эффективности существующих в России систем ОДК, был проделан сравнительный анализ принципов построения импортных и отечественных СОДК, из которого можно выделить основные отличия принципиального характера:

Отсутствие в требованиях нормативных документов соблюдения параметра - комплексного сопротивления (импеданса) трубы ППУ с ОДК как электрического элемента;

Несоблюдение расстояния от металлической поверхности элемента до проводников ОДК в трубах и фасонных изделиях (более того в нормах установлен переменный параметр расстояния - от 10 до 25 мм );

Отсутствие устройств согласования линии опроса проводников ОДК с локаторами (рефлектометрами);

Применение кабелей типа NYM с высоким коэффициентом затухания зондирующего импульса для соединения проводников ОДК трубопроводов и терминалов.

Для определения эффективных способов поиска дефектов изоляции предизолированных трубопроводов ППУ специалистами ООО «РМС», ЗАО «СПб ИТЭ» и ГУП «ТЭК СПб» были проведены испытания различных опросных линий системы ОДК (с использованием кабеля типа NYM, коаксиального кабеля и различных рефлектометров) на натурной модели трубопровода с воспроизведением типовых дефектов изоляции.

На территории филиала «ЭАП» ГУП «ТЭК СПб» смонтирован участок ППУ трубопровода тепловой сети условного диаметра Ду57 с применением фасонных изделий, сильфонного компенсатора и концевого элемента (рис. 1, фото 1).

Для моделирования дефектных участков тепловой сети на модели были оставлены незаделанные стыки с желобами из жести (фото 2). Остальные стыки выполнены методом заливки вспенивающихся компонентов с использованием термоусаживаемых муфт.

При монтаже системы ОДК согласно СП 41-105-2002 (кабель типа NYM) использовали 10-метровый кабель отточки подключения рефлектометра до трубопровода и 5-метровый кабель на промежуточном концевом элементе.

Монтаж системы ОДК согласно технологии фирмы EMS (АВВ) (с использованием соединительного коаксиального кабеля и согласующих трансформаторов линии «соединительный провод - сигнальный проводник») был выполнен 10-метровым коаксиальным кабелем отточки подключения рефлектометра до трубопровода (фото 3).

Для снижения потерь в линии опроса соединение рефлектометра с кабелем осуществлялось при помощи коаксиальных фитингов.

Измерения проводились рефлектометрами РЕЙС-105 и mTDR-007 (снятие рефлектограмм) при моделировании наиболее вероятных видов дефектов на тепловой сети: обрыв, короткое замыкание проводника на трубу, однократное и двойное увлажнение изоляции (в разных местах).

В рамках данного эксперимента были исследованы возможности комбинированного применения различных кабелей при монтаже линии опроса сигнальных проводников СОДК (наличие проходного терминала) в следующей последовательности: коаксиальный кабель - проводник ОДК - кабель NYM - проводник ОДК с разрывом проводников в конце линии опроса.

В результате проведенных испытаний и измерений можно сделать следующие выводы.

1. Затухание зондирующего импульса в кабеле типа NYM (рис. 2б) в несколько раз выше, чем в коаксиальном кабеле (рис. 2а). Это снижает длину обследуемого участка, ограничивая эффективное применение локатора на участках от камеры до камеры (150-200 м).

2. В связи с большими потерями мощности зондирующего импульса, при его прохождении по кабелю NYM необходимо повышать его энергию за счет увеличения длительности импульса, что приводит к снижению точности определения расстояния до места дефекта трубопровода.

3. Отсутствие согласующих элементов на переходах «кабель - труба», «труба - кабель» приводит к изменению формы отраженных импульсов, сглаживает их фронты и снижает точность определения места дефекта изоляции (рис. 3).

Российские трубы в ППУ-изоляции имеют отличные от импортных волновые свойства и параметры. Комплексное электрическое сопротивление (импеданс) труб и фасонных изделий на практике варьируется от 267 до 361 Ом (трубы ABB имеют импеданс 211 Ом), поэтому применение зарубежных согласующих устройств на наших трубах невозможно (ООО «РМС» разработаны согласующие устройства для труб ППУ, выпущенных по российским стандартам, имеется положительный опыт их практического применения на реальных объектах).

На данном пункте выводов следует остановиться особо, ввиду его важности для эксплуатации СОДК.

Разброс импеданса для различных трубоэле-ментов приводит к варьированию так называемого коэффициента укорочения для этих трубоэле-ментов. Как известно, измерения проводят при одном общем для всего трубопровода коэффициенте укорочения. Таким образом, имея вдоль трубопровода участки с различными коэффициентами укорочения, мы получим несоответствие измеренных электрических параметров – реальным физическим параметрам трубопроводов, причем несоответствие будет тем больше, чем длиннее трубопровод и чем больше на нем фасонных изделий (из практики несоответствие достигает до 5 м на 100-метровом участке трубопровода).

Для качественного оформления исполнительной документации по СОДК необходимо проводить контроль не только сопротивления изоляции и омического сопротивления петли проводников, но и измерение коэффициента укорочения каждого монтируемого трубоэлемента при помощи рефлектометра, фиксируя результаты измерений на исполнительной схеме трубопровода. В противном случае ошибки при поиске обрывов проводников и увлажнения изоляции, приведут к увеличению стоимости производства ремонтных работ за счет значительного увеличения объема земляных и восстановительных работ.

Отсутствие нормирования импеданса позволяет недобросовестным производителям при производстве труб в ППУ-изоляции применять в качестве проводников ОДК медный лакированный обмоточный провод. Это позволяет получать при монтаже превосходные электрические характеристики и «вечно исправный» трубопровод не зависимо от любого увлажнения изоляции. Система ОДК, в таком случае, является бесполезным, бутафорским приложением.

Так как импеданс зависит от диэлектрической проницаемости среды и расстояния от трубы до проводника, то применение нестандартных методов производства труб приводит, как правило, к увеличению импеданса и как следствие коэффициента укорочения трубоэлемента. Нормирование импеданса позволило бы осложнить доступ некачественных труб на рынок.

5. Применение кабелей NYM в качестве линии связи между локатором и трубопроводом ППУ с СОДК, а также в качестве соединителей между различными участками трубопроводов, полностью исключает применение стационарных специализированных локаторов повреждений (рис. 4) и не позволяет рассматривать тепловую сеть в качестве объекта автоматизации и диспетчеризации, оставляя значительные расходы на обходчиков и обслуживающий персонал (табл. 1).

6. Применение на одном контролируемом участке трубопровода различных типов соединительных кабелей неэффективно.

Наиболее эффективными являются системы ОДК, основанные на применении коаксиальных кабелей с согласующими устройствами. Такие системы ОДК полностью совместимы с приборами контроля проводников труб ППУ (использование которых предписывает СП 41-105-2002) и позволяют значительно повысить эффективность их применения.

Использование коаксиальных кабелей связи между трубопроводами откроет возможность применения специализированных стационарных локаторов повреждений для тепловых сетей. Что, в свою очередь, позволит:

Объединить в последствии локальные системы ОДК в единую сеть с необходимой иерархией;

Отображать состояние локальных СОДК на центральном диспетчерском пункте с указанием конкретного места дефекта сети (примером реализации подобной системы может служить опыт ГУП «ТЭК СПб»);

Оперативно принимать меры по ликвидации дефектов на начальной стадии их возникновения;

Снизить расходы на эксплуатацию систем ОДК (табл.1);

Экономить значительные средства на аварийном ремонте тепловых сетей (табл. 2);

Повысить надежность сетей за счет уменьшения аварийных отключений;

Получать объективную информацию о дефектах и состоянии тепло- и гидроизоляции на тепловой сети за счет устранения влияния субъективного человеческого фактора в подобного рода вопросах.

В заключение следует отметить, что система ОДК трубопроводов только на первый взгляд кажется простой и даже примитивной в монтаже. Большинство строительных организаций доверяют монтаж СОДК обычным электрикам, которые монтируют СОДК как обычные осветительные сети или подземные кабельные прокладки. В результате вместо эффективного средства контроля организации, эксплуатирующие тепловые сети, получают бесполезное приложение к тепловой сети.

Также необходимо отметить, что грамотно смонтированные системы ОДК позволяют реализовать все преимущества трубопроводов с ППУ-изоляцией, в частности максимально автоматизировать поиск мест увлажнения и повреждения изоляции трубопроводов, повысить точность определения этих мест. Трубопроводы с другими типами изоляции (АПб, ППМ и т.п.) в принципе не обладают подобными преимуществами.

Монтаж СОДК должны вести профессиональные организации, понимающие все тонкости и нюансы в обнаружении дефектов при помощи рефлектометров, имеющие необходимое оборудование, практический опыт строительства и наладки систем. Только профессионалы способны создавать эффективно работающие системы -СОДК не является исключением из этого правила.

Литература

1. СП 41-105-2002. Проектирование и строительство тепловых сетей бесканальной прокладки из стальных труб с индустриальной тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке.

2. СНиП 41-02-2003. Тепловые сети.

3. Слепченок В.С. Опыт эксплуатации коммунального теплоэнергетического предприятия. Уч. пособие - СПб., ПЭИпк, 2003 г., 185 с.