Из чего сделать пушку гаусса в домашних условиях. Как сделать многоступенчатый гаусс ган. Мощная пушка гаусса своими руками. Как сделать пушку Гаусса. Водяные и паровые

Ноя 19, 2014

Во-первых, редакция Science Debate поздравляет всех артиллеристов и ракетчиков! Ведь сегодня 19 ноября — День ракетных войск и артиллерии. 72 года назад, 19 ноября 1942 года с мощнейшей артиллерийской подготовки началось контрнаступление Красной Армии в ходе Сталинградской Битвы.

Именно поэтому мы сегодня приготовили для вас публикацию, посвященную пушкам, но не обычным, а пушкам Гаусса!

Мужчина, даже став взрослым, в душе остается мальчишкой, вот только игрушки у него меняются. Компьютерные игры стали настоящим спасением для солидных дядей, которые в детстве не доиграли в «войнушку» и теперь имеют возможность наверстать упущенное.

У компьютерных боевиков часто встречается футуристическое оружие, которое не встретишь в реальной жизни – знаменитая пушка Гаусса, которую может подбросить какой-нибудь чокнутый профессор или ее случайно можно отыскать в секретной хронике.

А возможно ли обзавестись Гаусс-пушкой в реале?

Оказывается можно, и сделать это не так сложно, как может показаться на первый взгляд. Давайте, скорее, выясним, что такое пушка Гаусса в классическом понимании. Пушка Гаусса – это оружие, в котором используется метод электромагнитного ускорения масс.

В основе конструкции этого грозного оружия лежит соленоид – цилиндрическая обмотка из проводов, где длина провода во много раз больше диаметра обмотки. Когда будет подан электрический ток, в полости катушки (соленоида) возникнет сильное магнитное поле. Оно втянет снаряд внутрь соленоида.

Если в момент, когда снаряд дойдет до центра, убрать напряжение, то магнитное поле не помешает двигаться телу по инерции, и оно вылетит из катушки.

Собираем Гаусс-пушку в домашних условиях

Для того чтобы создать пушку Гаусса своими руками, нам для начала, понадобится катушка индуктивности. На бобину аккуратно намотайте эмалированный провод, без резких перегибов, чтобы ни в коем случае не повредить изоляцию.

Первый слой, после наматывания, залейте суперклеем, подождите, пока он высохнет, и приступайте к следующему слою. Таким же образом нужно намотать 10-12 слоев. Готовую катушку надеваем на будущий ствол оружия. На один из его краев следует надеть заглушку.

Для того чтобы получить сильный электрический импульс, отлично подойдет батарея конденсаторов. Они способны отдавать накопленную энергию в течение короткого времени, пока пуля дойдет до середины катушки.

Для зарядки конденсаторов понадобится зарядное устройство. Подходящее устройство есть в фотографических аппаратах, оно служит для возникновения вспышки. Конечно, речь не идет о дорогой модели, которую мы будем препарировать, но одноразовые «Кодаки» сгодятся.

К тому же в них, кроме зарядки и конденсатора, прочих электроэлементов нет. Разбирая фотоаппарат, будьте осторожны, чтобы вас не ударило электрическим током. С устройства для зарядки смело удаляйте скобы для батареек, отпаяйте конденсатор.

Таким образом, нужно подготовить приблизительно 4-5 плат (можно больше, если желание и возможности позволяют). Вопрос выбора конденсатора заставляет сделать выбор между мощностью выстрела и временем, которое понадобится для зарядки. Большая емкость конденсатора требует и большего отрезка времени, снижая скорострельность, так что придется искать компромисс.

Светодиодные элементы, установленные на зарядные контуры, сигнализируют светом о том, что необходимый уровень зарядки достигнут. Конечно, можно подключить дополнительные зарядные контуры, но не переусердствуйте, чтобы не спалить ненароком транзисторы на платах. Для того чтобы разрядить батарею, в целях безопасности лучше всего установить реле.

Управляющий контур подключаем к батарейке через кнопку спуска, а управляемый – в цепь, между катушкой и конденсаторами. Для того чтобы совершить выстрел, необходимо подать питание на систему, и, после светового сигнала, зарядить оружие. Питание отключаем, прицеливаемся и стреляем!

Если процесс вас увлек, а полученной мощности маловато, то вы можете приступить к созданию многоступенчатой пушки Гаусса, ведь она должна быть именно такой.

Какой же праздник без праздничного салюта. Вот будет здорово, если на день рождения мамы или бабушки прозвучит артиллерийский залп. А ещё есть Новый год, День защитника Отечества, 8 Марта и другие праздники, а можно просто поиграть в пиратов. Так что салютная пушка в доме необходима.

Предлагаю сделать старинную корабельную пушку. Заряжаются пушки обыкновенными хлопушками. Поэтому главное условие нашей работы - внутренний диаметр ствола пушки должен быть несколько больше диаметра хлопушки. Размеры пушки не даю - это зависит от вашего желания и возможностей.

Для работы вам понадобится:

  • форма для изготовления ствола пушки
  • ненужные газеты (или обои)
  • клей ПВА
  • канцелярский нож
  • шпаклёвка
  • шкурка
  • деревянные бруски или фанера
  • краска
  • целлофановая плёнка
  • упаковочный гофрированный картон
  • хлопушки


Устройство настоящей корабельной пушки

Как сделать пушку из папье-маше

1 . Ищем подходящую основу. Можно взять трубку от пылесоса или деревянный черенок от лопаты. А лучше всего - конусообразную ножку от журнального столика.

2 . Для того чтобы наш ствол в конце работы хорошо снимался с формы, обматываем форму целлофановой плёнкой.

3 . На форме отмечаем длину пушки и добавляем ещё по 2 сантиметра с обеих сторон.

Начинаем обклеивать форму бумагой. Можно взять ненужные газеты, а если найдутся обои, это будет ещё лучше. Нарезаем бумагу на полоски шириной 4–5 см и начинаем обклеивать нашу форму. Для работы используем жидкий клей ПВА или любой обойный клей. Стараемся клеить ровно, без складок. Через 5–6 слоёв даём стволу просохнуть. И так клеим до толщины 1 см. Для большего сходства с настоящей пушкой постараемся придать нашему стволу конусообразную форму.

4 . Когда ствол достигнет нужной толщины, даём ему окончательно просох-нуть. Для достижения более ровной поверхности применяем шпаклёвку для дерева. Дав шпаклёвке просохнуть, шкуркой убираем погрешности нашей работы.

5 . Используя тоненькие полоски бумаги, формируем пояски и обода. И ещё раз шкурим. Обрезав излишки бумаги, аккуратно снимаем ствол с формы.

6 . Важным элементом ствола являются цапфы - они держат ствол на лафете и должны быть «сильными». Сделать их можно из дерева и вклеить в отверстия, вырезанные в стволе.

7 . Наш ствол почти готов. Остаётся только его покрасить. Красить можно любой краской. Я покрасил аэрозольной краской из баллончика. Такая краска и ложится ровнее и сохнет быстрее, правда обладает резким запахом, поэтому делать это лучше на улице.

8 . Пришло время подумать и о боевых возможностях нашего орудия, а точнее, о способах его заряжать.

В качестве снаряда мы будем использовать хлопушки. Как вы знаете, они стреляют, когда одной рукой держишь хлопушку, а другой дёргаешь за верёвочку. Правой рукой мы будем дёргать, а левую руку нам должен заменить ствол. Для этого необходимо придумать запорное устройство, или затвор.

Если вы решите заряжать пушку через ствол, как их заряжали в старину, то необходимо сделать так, чтобы снаряд не выдёргивался вместе с верёвочкой. Для этого в задней части ствола, внутри по кругу приклеим буртик (небольшой выступ), который не позволит хлопушке выскочить, когда мы будем дёргать за верёвочку.

9 . Если вы хотите заряжать пушку с задней, «казённой», части ствола, то вам надо поставить затвор. Этот способ уменьшает время заряжания пушки и делает её намного проще. Но для этого надо проявить изобретательские способности.

В моей пушке затвор сделан по принципу крючка, который одним концом крепится к торцу ствола шурупом, а другим накидывается на выступ, находящийся с противоположной стороны. Пока работает исправно.

И ещё очень важный совет. Чтобы мама не ругала и не заставляла убирать в комнате после салютного залпа, можно модернизировать хлопушку: осторожно снять предохранительную бумажку и аккуратно высыпать содержимое хлопушки (конфетти) в корзину для мусора. Эффект выстрела сохранится (даже дымное облако будет), а мусора станет меньше или совсем не будет.

10 . Теперь о лафете.

Лафет можно склеить из деревянных брусков - так будет правдоподобнее и надёжнее, для этого нам понадобится пила. Но дело это хлопотное. Поищем, чем можно заменить дерево.

Возьмём упаковочный гофрированный картон. Лучше, если попадётся двухслойный. В соответствии с размерами ствола разметим приблизительно листы картона и склеим их. Желательно подбирать картон так, чтобы направление гофры не совпадало: это увеличит прочность нашего лафета. Когда заготовка достигнет толщины 4–5 см, делаем окончательную раскройку деталей лафета и склеиваем его. О прочности лафета не беспокойтесь - из таких заготовок умельцы делают мебель.

Для красоты обклеиваем его бумагой с деревянной текстурой.

11 . И, наконец, собираем пушку. Соединяем ствол с лафетом. Укладываем его на цапфы в пазы и закрепляем (можно использовать накладку из плотного картона, а можно просто вклеить).


Заряжаем и БА-БАХ!!!

Представляем схему электромагнитной пушки на таймере NE555 и микросхеме 4017B.

Принцип дейcтвия электромагнитной (гаусс-)пушки основан на быстром последовательном срабатывании электромагнитов L1-L4, каждый из которых создает дополнительную силу, которая ускоряет металлический заряд. Таймер NE555 посылает на микросхему 4017 импульсы с периодом приблизительно в 10 мс, частоту импульсов сигнализирует светодиод D1.

При нажатии кнопки PB1, микросхема IC2 с таким же интревалом последовательно открывает транзисторы c TR1 по TR4, в коллектроную цепь которых включены электромагниты L1-L4.

Для изготовления этих электромагнитов нам понадобится медная трубка длиной в 25 см и диаметром в 3 мм. Каждая катушка содердит по 500 витков провода 0.315мм покрытого эмалью. Катушки должны бать сделаны таким образом чтобы они могли свободно перемещатся. В качестве снаряда выступает кусок гвоздя длиной в 3 см и диаметром 2 мм.

Пушка может питаться как от аккумулятора в 25 В, так и от сети переменного тока.

Изменяя положение электромагнитов добиваемся наилучшего эффекта, из рисунка выше видно что интервал между каждой катушкой увеличивается — это связано с увеличением скорости снаряда.

Это конечно не настоящая гаусс-пушка, но рабочий прототип, на основе которого можно, умощнив схему, собрать более мощную гаусс-пушку.

Другие типы электромагнитного оружия.

Помимо магнитных ускорителей масс, существует множество других типов оружия, использующих для своего функционирования электромагнитную энергию. Рассмотрим наиболее известные и распространенные их типы.

Электромагнитные ускорители масс .

Помимо “гаусс ганов”, существует ещё как минимум 2 типа ускорителей масс – индукционные ускорители масс (катушка Томпсона) и рельсовые ускорители масс, так же известные как “рэйл ганы” (от англ. “Rail gun” – рельсовая пушка).

В основу функционирования индукционного ускорителя масс положен принцип электромагнитной индукции. В плоской обмотке создается быстро нарастающий электрический ток, который вызывает в пространстве вокруг переменное магнитное поле. В обмотку вставлен ферритовый сердечник, на свободный конец которого надето кольцо из проводящего материала. Под действием переменного магнитного потока, пронизывающего кольцо в нём возникает электрический ток, создающий магнитное поле противоположной направленности относительно поля обмотки. Своим полем кольцо начинает отталкиваться от поля обмотки и ускоряется, слетая со свободного конца ферритового стержня. Чем короче и сильнее импульс тока в обмотке, тем мощнее вылетает кольцо.

Иначе функционирует рельсовый ускоритель масс. В нем проводящий снаряд движется между двух рельс — электродов (откуда и получил свое название — рельсотрон), по которым подается ток.

Источник тока подключается к рельсам у их основания, поэтому ток течет как бы в догонку снаряду и магнитное поле, создаваемое вокруг проводников с током, полностью сосредоточенно за проводящим снарядом. В данном случае снаряд является проводником с током, помещённым в перпендикулярное магнитное поле, созданное рельсами. На снаряд по всем законам физики действует сила Лоренца, направленная в сторону противоположную месту подключения рельс и ускоряющая снаряд. С изготовлением рельсотрона связан ряд серьезных проблем — импульс тока должен быть настолько мощным и резким, чтобы снаряд не успел бы испарится (ведь через него протекает огромный ток!), но возникла бы ускоряющая сила, разгоняющая его вперед. Поэтому материал снаряда и рельс должен обладать как можно более высокой проводимостью, снаряд как можно меньшей массой, а источник тока как можно большей мощностью и меньшей индуктивность. Однако особенность рельсового ускорителя в том, что он способен разгонять сверхмалые массы до сверх больших скоростей. На практике рельсы изготавливают из безкислородной меди покрытой серебром, в качестве снарядов используют алюминиевые брусочки, в качестве источника питания — батарею высоковольтных конденсаторов, а самому снаряду перед вхождением на рельсы стараются придать как можно большую начальную скорость, используя для этого пневматические или огнестрельные пушки.

Помимо ускорителей масс к электромагнитному оружия относятся источники мощного электромагнитного излучения, такие как лазеры и магнетроны .

Лазер известен всем. Состоит из рабочего тела, в котором при выстреле создается инверсная населенность квантовых уровней электронами, резонатора для увеличения пробега фотонов внутри рабочего тела и генератора, который эту самую инверсную населённость будет создавать. В принципе, инверсную населённость можно создать в любом веществе и в наше время проще сказать, из чего НЕ делают лазеры.

Лазеры могут классифицироваться по рабочему телу: рубиновые, СО2, аргоновые, гелий-неоновые, твердотельные (GaAs), спиртовые, и т.д., по режиму работы: импульсные, непрерывные, псевдонепрерывные, могут классифицироваться по количеству используемых квантовых уровней: 3х уровневый, 4х уровневый, 5и уровневые. Так же лазеры классифицируют по частоте генерируемого излучения — микроволновые, инфракрасные, зеленые, ультрафиолетовые, рентгеновские, и т.д. КПД лазера обычно не превышает 0,5%, однако сейчас ситуация изменилась – полупроводниковые лазеры (твердотельные лазеры на основе GaAs) имеют КПД свыше 30% и в наши дни могут обладать мощностью выходного излучения аж до 100(!) Вт, т.е. сравнимую с мощными "классическими" рубиновыми или СО2 лазерами. Кроме того, существуют газодинамические лазеры, менее всего похожие на другие типы лазеров. Их отличие в том, что они способны производить непрерывный луч огромной мощности, что позволяет использовать их для военных целей. В сущности, газодинамический лазер представляет собой реактивный двигатель, перпендикулярно газовому потоку в котором стоит резонатор. Раскаленный газ, выходящий из сопла, находится в состоянии инверсной населённости.

Стоит добавить к нему резонатор – и многомеговаттный поток фотонов полетит в пространство.

Микроволновые пушки — основным функциональным узлом является магнетрон — мощный источник микроволнового излучения. Недостатком микроволновых пушок является их чрезмерная даже по сравнению с лазерами опасность применения — микроволновое излучение хорошо отражается от препятствий и в случае стрельбы в закрытом помещении облучению подвергнется буквально все внутри! Кроме того, мощное микроволновое излучение смертельно для любой электроники, что так же надо учитывать.

А почему, собственно, именно "гаусс ган", а не дискометы Томпсона, рельсотроны или лучевое оружие?

Дело в том, что из всех типов электромагнитного оружия он наиболее прост в изготовлении именно гаусс ган. Кроме того, он имеет довольно высокий по сравнению с другими электромагнитными стрелялками КПД и может работать на низких напряжениях.

На следующей по сложности ступени стоят индукционные ускорители – дискометы (или трансформаторы) Томпсона. Для их работы требуются несколько более высокие напряжения, нежели для обычной гауссовки, затем, пожалуй, по сложности стоят лазеры и микроволновки, и на самом последнем месте стоит рельсотрон, для которого требуются дорогие конструкционные материалы, безупречный расчет и точность изготовления, дорогой и мощный источник энергии (батарея высоковольтных конденсаторов) и ещё много всего дорогого.

Кроме того, гаусс ган, несмотря на свою простоту, обладает неимоверно большим простором для конструкторских решений и инженерных изысканий — так что это направление довольно интересное и перспективное.

СВЧ пушка своими руками

Прежде всего предупреждаю: данное оружие является очень опасным, при изготовлении и эксплуатации использовать максимальную степень осторожности!

Короче я Вас предупредил. А теперь приступаем к изготовлению.

Берём любую микроволновую печь, желательно самую маломощную и дешёвую.

Если она сгоревшая, не имеет значения — лишь бы магнетрон был рабочий. Вот её упрощённая схема и внутренний вид.

1. Лампа освещения.
2. Вентиляционные отверстия.
3. Магнетрон.
4. Антенна.
5. Волновод.
6. Конденсатор.
7. Трансформатор.
8. Панель управления.
9. Привод.
10. Вращающийся поддон.
11. Сепаратор с роликами.
12. Защелка дверцы.

Далее извлекаем оттуда этот самый магнетрон. Магнетрон разрабатывался как мощный генератор электромагнитных колебаний СВЧ диапазона для использования в системах РЛС. В микроволновках стоят магнетроны с частотой микроволн 2450 Мгц. В работе магнетрона используется процесс движения электронов при наличии двух полей - магнитного и электрического, перпендикулярных друг другу. Магнетрон представляет собой двухэлектродную лампу или диод, содержащий накаливаемый катод, испускающий электроны, и холодный анод. Магнетрон помещается во внешнее магнитное поле.

Пушка Гаусса своими руками

Анод магнетрона имеет сложную монолитную конструкцию с системой резонаторов, необходимых для усложнения структуры электрического поля внутри магнетрона. Магнитное поле создается катушками с током (электромагнит), между полюсами которого помещается магнетрон. Если бы магнитного поля не было, то электроны, вылетающие из катода практически без начальной скорости, двигались бы в электрическом поле вдоль прямых линий, перпендикулярных к катоду, и все попадали бы на анод. При наличии перпендикулярного магнитного поля траектории электронов искривляются силой Лоренца.

На нашем радиобазаре продаются б\у магнетроны по 15уе.

Это магнетрон в разрезе и без радиатора.

Теперь нужно узнать, как его запитывать. По схеме видно, что требуется накал — 3В 5А и анод — 3кВ 0.1А. Указанные значения питания применимы к магнетронам из слабых микроволновок, и для мощных могут быть несколько больше. Мощность магнетрона современных микроволновых печей составляет около 700 Вт.

Для компактности и мобильности СВЧ-пушки, эти значения можно несколько снизить — лишь бы происходила генерация. Запитывать магнетрон мы будем от преобразователя с аккумулятором от компьютерного бесперебойника.

Паспортное значение 12 вольт 7.5 ампер. На несколько минут боя вполне должно хватить. Накал магнетрона — 3В, получаем с помощью микросхемы стабилизатора LM150.

Накал желательно включать за несколько секунд до включения анодного напряжения. А киловольты на анод, берём от преобразователя (см. схему ниже).

Питание на накал и П210, подаётся включением основного тумблера за несколько секунд до выстрела, а сам выстрел производим кнопкой, подающей питание на задающий генератор на П217-х. Данные трансформаторов берутся из той-же статьи, только вторичку Тр2 мотаем 2000 — 3000 витков ПЭЛ0.2. С получившейся обмотки, переменка подаётся на простейший однополупериодный выпрямитель.

Высоковольтный конденсатор и диод, можно взять из микроволновки, или при отсутствии заменить на 0.5мкф — 2кВ, диод — КЦ201Е.

Для направленности излучения, и отсекания обратных лепестков (чтоб самого не зацепило), магнетрон помещаем в рупор. Для этого используем металический рупор от школьных звонков или стадионных динамиков. В крайнем случае можно взять цилиндрическую литровую банку из — под краски.

Вся СВЧ-пушка помещается в корпус, сделанный из толстой трубы диаметром 150-200 мм.

Ну вот пушка и готова. Использоватьеё можно для выжигания бортового компьютера и сигнализации в авто, выжигании мозгов и телевизоров злым соседям, охоте на бегающих и летающих тварей. Надеюсь, это СВЧ орудие Вы так и не запустите — для Вашей-же безопасности.

Составитель: Патлах В.В.
http://patlah.ru

ВНИМАНИЕ!

Гаусс пушка (гаусс винтовка)

Другие названия: гауссовка, гаусс-ружье, винтовка Гаусса, гаусс-ган, разгонная винтовка.

Гаусс-винтовка (или ее более крупная разновидность гаусс-пушка), как и рельсотрон, относится к электро-магнитному оружию.

Гаусс пушка

В настоящий момент боевых промышленных образцов не существует, хотя ряд лабораторий (по большей части любительских и университетских) продолжает настойчиво работать над созданием этого оружия. Система названа по имени немецкого ученого Карла Гаусса (1777-1855). С какого перепугу математик удостоился такой чести, лично я понять не могу (пока не могу, вернее не имею соответствующей информации). Гаусс к теории электромагнетизма имел куда меньшее отношение, чем к примеру Эрстед, Ампер, Фарадей или Максвелл, но, тем не менее, пушку назвали именно в его честь. Название прижилось, а посему будем им пользоваться и мы.

Принцип действия:
Гаусс винтовка состоит из катушек (мощных электромагнитов), насаженных на сделанный из диэлектрика ствол. При подаче тока электромагниты на какой-то краткий момент включаются один за другим в направлении от ствольной коробки к дулу. Они по очереди притягивают к себе стальную пулю (иглу, дротик или снаряд, если говорить о пушке) и тем самым разгоняют ее до значительных скоростей.

Достоинства оружия:
1. Отсутствие патрона. Это позволяет значительно увеличить вместимость магазина. Например, в магазин, в который вмещается 30 патронов, можно зарядить 100-150 пуль.
2. Высокая скорострельность. Теоретически система позволяет начинать разгон следующей пули еще до того, как предыдущая покинула ствол.
3. Бесшумность стрельбы. Сама конструкция оружия позволяет избавиться от большинства акустических составляющих выстрела (см. отзывы), поэтому стрельба из гаусс-винтовки выглядит как серия едва различимых хлопков.
4. Отсутствие демаскирующей вспышки. Данное свойство особенно полезно в темное время суток.
5. Малая отдача. По этой причине при выстреле ствол оружия практически не задирается, а следовательно возрастает точность огня.
6. Безотказность. В гаусс винтовке не используются патроны, а стало быть сразу отпадает вопрос о недоброкачественных боеприпасах. Если же вдобавок к этому вспомнить об отсутствии ударно-спускового механизма, то само понятие «осечка» можно позабыть, как страшный сон.
7. Повышенная износостойкость. Это свойство обусловлено малым количеством подвижных частей, низкими нагрузками на узлы и детали при стрельбе, отсутствием продуктов сгорания пороха.
8. Возможность использования как в открытом космосе, так и в атмосферах, подавляющих горение пороха.
9. Регулируемая скорость пули. Эта функция позволяет при необходимости уменьшать скорость пули ниже звуковой. В результате исчезают характерные хлопки, и гаусс-винтовка становится полностью беззвучной, а стало быть, пригодной для выполнения секретных спецопераций.

Недостатки оружия:
Среди недостатков Гаусс винтовки часто называют следующие: низкий КПД, большой расход энергии, большой вес и габариты, длительное время перезарядки конденсаторов и т. д. Хочу сказать, что все эти проблемы обусловлены лишь уровнем современного развития техники. В будущем при создании компактных и мощных источников питания, при использовании новых конструкционных материалов и сверхпроводников Гаусс пушка действительно может стать мощным и эффективным оружием.

В литературе, конечно же фантастической, гаусс-винтовкой вооружил легионеров Уильям Кейт в своем цикле «Пятый иностранный легион». (Одна из моих любимейших книг!) Была она и на вооружении милитаристов с планеты Клизанд, на которую занесло Джима ди Гриза в романе Гаррисона «Месть крысы из нержавеющей стали». Говорят, гаусовка встречается и в книгах из серии «S.T.A.L.K.E.R.», но я прочел всего пяток из них. Там ничего подобного не обнаружил, а за другие говорить не буду.

Что касается лично моего творчества, то в своем новом романе «Мародеры» я вручил гаусс-карабин «Метель-16» тульского производства своему главному герою Сергею Корну. Правда, владел он им только в начале книги. Ведь главный герой все-таки, а значит, ему полагается пушка посолидней.

Олег Шовкуненко

Отзывы и комментарии:

Александр 29.12.13
По п.3 — выстрел со сверхзвуковой скоростью пули в любом случае будет громким. По этой причине для бесшумного оружия используются специальные дозвуковые патроны.
По п.5 — отдача будет присуща любому оружию, стреляющему "материальными объектами" и зависит от соотношения масс пули и оружия, и импульса силы ускоряющей пулю.
По п.8 — никакая атмосфера не может повлиять на горение пороха в герметичном патроне. В открытом космосе огнестрельное оружие тоже будет стрелять.
Проблема может быть только в механической устойчивости деталей оружия и свойствах смазки при сверхнизких температурах. Но это вопрос решаемый и ещё в 1972 году были проведены испытательные стрельбы в открытом космосе из орбитальной пушки с военной орбитальной станции ОПС-2 (Салют-3).

Олег Шовкуненко
Александр хорошо, что написали.

Честно говоря, делал описание оружия исходя из своего собственного понимания темы. Но может кое в чем оказался не прав. Давайте вместе разбираться по пунктам.

Пункт №3. «Бесшумность стрельбы».
Насколько я знаю, звук выстрела из любого огнестрельного оружия складывается из нескольких компонентов:
1) Звук или лучше сказать звуки срабатывания механизма оружия. Сюда относятся удар бойка по капсулю, лязг затвора и т.д.
2) Звук, который создает воздух, наполнявший ствол перед выстрелом. Его вытесняет как пуля, так и пороховые газы, просачивающиеся по каналам нарезки.
3) Звук, который создают сами пороховые газы при резком расширении и охлаждении.
4) Звук, создаваемый акустической ударной волной.
Первые три пункта к гауссовке вообще не относятся.

Предвижу вопрос по воздуху в стволе, но в гаусс-виновке стволу совсем не обязательно быть цельным и трубчатым, а значит проблема отпадает сама собой. Так что остается пункт номер 4, как раз тот, о котором вы, Александр, и говорите. Хочу сказать, что акустическая ударная волна это далеко не самая громкая часть выстрела. Глушители современного оружия с ней практически вообще не борются. И тем не менее, огнестрельное оружие с глушителем все же называется бесшумным. Следовательно, и гауссовку тоже можно назвать бесшумной. Кстати, огромное вам спасибо, что напомнили. Я забыл указать среди достоинств гаусс-гана возможность регулировки скорости пули. Ведь возможно установить дозвуковой режим (что сделает оружие полностью бесшумным и предназначенным для скрытных действий в ближнем бою) и сверхзвуковой (это уже для войны по-настоящему).

Пункт №5. «Практически полное отсутствие отдачи».
Конечно, отдача у гассовки тоже имеется. Куда же без нее?! Закон сохранения импульса пока еще никто не отменял. Только принцип работы гаусс-винтовки сделает ее не взрывной, как в огнестреле, а как бы растянутой и плавной и потому куда менее ощутимой для стрелка. Хотя, честно говоря, это лишь мои подозрения. Пока еще не доводилось палить из такой пушки:))

Пункт №8. «Возможность использования как в открытом космосе…».
Ну, про невозможность использования огнестрельного оружия в космическом пространстве я вообще ничего не говорил. Только его потребуется так переделать, столько технических проблем решить, что уж легче создать гаусс-ган:)) Что касается планет со специфическими атмосферами, то применение на них огнестрела действительно может быть не только затруднено, но и небезопасно. Но это уже из раздела фантастики, собственно говоря, которой ваш покорный слуга и занимается.

Вячеслав 05.04.14
Спасибо за интересный рассказ об оружии. Все очень доступно изложено и разложено по полочкам. Еще бы схемку для пущей наглядности.

Олег Шовкуненко
Вячеслав, вставил схемку, как Вы и просили).

интересующийся 22.02.15
«Почему винтовка Гауса?» — в Википедии говорят что потому что он заложил основы теории электромагнетизма.

Олег Шовкуненко
Во-первых, исходя из этой логики, авиабомбу следовало назвать «Бомбой Ньютона», ведь она падает на землю, подчиняясь Закону всемирного тяготения. Во-вторых, в той же самой Википедии Гаусс в статье «Электромагнитное взаимодействие» вообще не упоминается. Хорошо, что мы все образованные люди и помним, что Гаусс вывел одноименную теорему. Правда, эта теорема входит в более общие уравнения Максвелла, так что Гаусс тут вроде как опять в пролете с «заложением основ теории электромагнетизма».

Евгений 05.11.15
Винтовка Гауса, это придуманное название оружия. Впервые оно появилось в легендарной постапокалептической игре Fallout 2.

Roman 26.11.16
1) насчет того какое отношение имеет Гаусс к названию) почитайте в Википедии, но не электромагнетизм, а теорема Гаусса эта теорема — основа электромагнетизма и является основой для уравнений Максвелла.
2) грохот от выстрела в основном из-за резко расширяющихся пороховых газов. потому как пуля она сверхзвуковая и через 500м от среза ствола, но грохота от нее нет! только свист от разрезаемого ударной волной от пули воздуха и только-то!)
3) насчет того, что мол существуют образцы стрелкового оружия и оно бесшумно потому, что мол пуля там дозвуковая — это бред! когда приводятся какие-либо аргументы, нужно разобраться с сутью вопроса! выстрел бесшумный не потому, что пуля дозвуковая, а потому, что там пороховые газы не вырываются из ствола! почитайте про пистолет ПСС в Вике.

Олег Шовкуненко
Roman, вы случайно не родственник Гауссу? Уж больно рьяно вы отстаиваете его право на данное название. Лично мне по барабану, если людям нравится, пусть будет гаусс-пушка. Насчет всего остального, почитайте отзывы к статье, там вопрос бесшумности уже детально обсуждался. Ничего нового к этому добавить не могу.

Даша 12.03.17
Пишу научную фантастику. Мнение: РАЗГОНКА – это оружие будущего. Я бы не стала приписывать чужаку-иноземцу право иметь первенство на это оружие. Русская РАЗГОНКА НАВЕРНЯКА ОПЕРЕДИТ гнилой запад. Лучше не давать гнилому иноземцу ПРАВО НАЗЫВАТЬ ОРУЖИЕ ЕГО ГОВЕНЫМ ИМЕНЕМ! У русских своих умников полно! (незаслуженно забытых). Кстати, пулемет (пушка) Гатлинга появился ПОЗЖЕ, чем русская СОРОКА (система вращающихся стволов). Гатлинг просто запатентовал украденную из России идею. (Будем впредь звать его Козел Гатл за это!). Поэтому Гаусс тоже не имеет отношения к разгонному оружию!

Олег Шовкуненко
Даша, патриотизм это конечно хорошо, но только здоровый и разумный. А вот с гаусс-пушкой, как говорится, поезд ушел. Термин уже прижился, как и многие другие. Не станем же мы менять понятия: интернет, карбюратор, футбол и т.д. Однако не столь уж и важно чьим именем названо то или иное изобретение, главное, кто сможет довести его до совершенства или, как в случае с гаусс-винтовкой, хотя бы до боевого состояния. К сожалению, пока не слышал о серьезных разработках боевых гаусс-систем, как в России, так и за рубежом.

Божков Александр 26.09.17
Все понятно. Но можно и про другие виды оружия статьи добавить?: Про термитную пушку, электромёт, BFG-9000, Гаусс-арбалет, эктоплазменный автомат.

Написать комментарий

Пистолет Гаусса своими руками

Несмотря на относительно скромные размеры, пистолет Гаусса – это самое серьезное оружие, которое мы когда-либо строили. Начиная с самых ранних этапов его изготовления, малейшая неосторожность в обращении с устройством или отдельными его компонентами может привести к поражению электрическим током.

Гаусс-пушка. Простейшая схема

Будьте внимательны!

Главный силовой элемент нашей пушки – катушка индуктивности

Рентген пушки Гаусса

Расположение контактов на зарядном контуре одноразового фотоаппарата Kodak

Обладать оружием, которое даже в компьютерных играх можно найти только в лаборатории сумасшедшего ученого или возле временного портала в будущее, – это круто. Наблюдать, как равнодушные к технике люди невольно фиксируют на устройстве взгляд, а заядлые геймеры спешно подбирают с пола челюсть, – ради этого стоит потратить денек на сборку пушки Гаусса.

Как водится, начать мы решили с простейшей конструкции – однокатушечной индукционной пушки. Эксперименты с многоступенчатым разгоном снаряда оставили опытным электронщикам, способным построить сложную систему коммутации на мощных тиристорах и точно настроить моменты последовательного включения катушек. Вместо этого мы сконцентрировались на возможности приготовления блюда из повсеместно доступных ингредиентов. Итак, чтобы построить пушку Гаусса, прежде всего придется пробежаться по магазинам. В радиомагазине нужно купить несколько конденсаторов с напряжением 350–400 В и общей емкостью 1000–2000 микрофарад, эмалированный медный провод диаметром 0,8 мм, батарейные отсеки для «Кроны» и двух 1,5-вольтовых батареек типа С, тумблер и кнопку. В фототоварах возьмем пять одноразовых фотоаппаратов Kodak, в автозапчастях – простейшее четырехконтактное реле от «Жигулей», в «продуктах» – пачку соломинок для коктейлей, а в «игрушках» – пластмассовый пистолет, автомат, дробовик, ружье или любую другую пушку, которую вы захотите превратить в оружие будущего.

Мотаем на ус

Главный силовой элемент нашей пушки – катушка индуктивности. С ее изготовления стоит начать сборку орудия. Возьмите отрезок соломинки длиной 30 мм и две большие шайбы (пластмассовые или картонные), соберите из них бобину с помощью винта и гайки. Начните наматывать на нее эмалированный провод аккуратно, виток к витку (при большом диаметре провода это довольно просто). Будьте внимательны, не допускайте резких перегибов провода, не повредите изоляцию. Закончив первый слой, залейте его суперклеем и начинайте наматывать следующий. Поступайте так с каждым слоем. Всего нужно намотать 12 слоев. Затем можно разобрать бобину, снять шайбы и надеть катушку на длинную соломинку, которая послужит стволом. Один конец соломинки следует заглушить. Готовую катушку легко проверить, подключив ее к 9-вольтовой батарейке: если она удержит на весу канцелярскую скрепку, значит, вы добились успеха. Можно вставить в катушку соломинку и испытать ее в роли соленоида: она должна активно втягивать в себя отрезок скрепки, а при импульсном подключении даже выбрасывать ее из ствола на 20–30 см.

Препарируем ценности

Для формирования мощного электрического импульса как нельзя лучше подходит батарея конденсаторов (в этом мнении мы солидарны с создателями самых мощных лабораторных рельсотронов). Конденсаторы хороши не только большой энергоемкостью, но и способностью отдать всю энергию в течение очень короткого времени, до того как снаряд достигнет центра катушки. Однако конденсаторы необходимо как-то заряжать. К счастью, нужное нам зарядное устройство есть в любом фотоаппарате: конденсатор используется там для формирования высоковольтного импульса для поджигающего электрода вспышки. Лучше всего нам подходят одноразовые фотоаппараты, потому что конденсатор и «зарядка» – это единственные электрические компоненты, которые в них есть, а значит, достать зарядный контур из них проще простого.

Разборка одноразового фотоаппарата – это этап, на котором стоит начать проявлять осторожность. Вскрывая корпус, старайтесь не касаться элементов электрической цепи: конденсатор может сохранять заряд в течение долгого времени. Получив доступ к конденсатору, первым делом замкните его выводы отверткой с ручкой из диэлектрика. Только после этого можно касаться платы, не опасаясь получить удар током. Удалите с зарядного контура скобы для батарейки, отпаяйте конденсатор, припаяйте перемычку к контактам кнопки зарядки – она нам больше не понадобится. Подготовьте таким образом минимум пять зарядных плат. Обратите внимание на расположение проводящих дорожек на плате: к одним и тем же элементам схемы можно подключиться в разных местах.

Расставляем приоритеты

Подбор емкости конденсаторов – это вопрос компромисса между энергией выстрела и временем зарядки орудия. Мы остановились на четырех конденсаторах по 470 микрофарад (400 В), соединенных параллельно. Перед каждым выстрелом мы в течение примерно минуты ждем сигнала светодиодов на зарядных контурах, сообщающих, что напряжение в конденсаторах достигло положенных 330 В. Ускорить процесс заряда можно, подключая к зарядным контурам по несколько 3-вольтовых батарейных отсеков параллельно. Однако стоит иметь в виду, что мощные батареи типа «С» обладают избыточной силой тока для слабеньких фотоаппаратных схем. Чтобы транзисторы на платах не сгорели, на каждую 3-вольтовую сборку должно приходиться 3–5 зарядных контуров, подключенных параллельно. На нашем орудии к «зарядкам» подключен только один батарейный отсек. Все остальные служат в качестве запасных магазинов.

Определяем зоны безопасности

Мы никому не посоветуем держать под пальцем кнопку, разряжающую батарею 400-вольтовых конденсаторов. Для управления спуском лучше установить реле. Его управляющий контур подключается к 9-вольтовой батарейке через кнопку спуска, а управляемый включается в цепь между катушкой и конденсаторами. Правильно собрать пушку поможет принципиальная схема. При сборке высоковольтного контура пользуйтесь проводом сечением не менее миллиметра, для зарядного и управляющего контуров подойдут любые тонкие провода.

Проводя эксперименты со схемой, помните: конденсаторы могут иметь остаточный заряд. Прежде чем прикасаться к ним, разряжайте их коротким замыканием.

Подводим итог

Процесс стрельбы выглядит так: включаем тумблер питания; дожидаемся яркого свечения светодиодов; опускаем в ствол снаряд так, чтобы он оказался слегка позади катушки; выключаем питание, чтобы при выстреле батарейки не отбирали энергию на себя; прицеливаемся и нажимаем на кнопку спуска. Результат во многом зависит от массы снаряда. Нам с помощью короткого гвоздя с откусанной шляпкой удалось прострелить банку с энергетическим напитком, которая взорвалась и залила фонтаном полредакции. Затем очищенная от липкой газировки пушка запустила гвоздь в стену с расстояния в полсотни метров. А сердца поклонников фантастики и компьютерных игр наше орудие поражает без всяких снарядов.

Составитель: Патлах В.В.
http://patlah.ru

© «Энциклопедия Технологий и Методик» Патлах В.В. 1993-2007 гг.

ВНИМАНИЕ!
Запрещается любая републикация, полное или частичное воспроизведение материалов данной статьи, а также фотографий, чертежей и схем, размещенных в ней, без предварительного письменного согласования с редакцией энциклопедии.

Напоминаю! Что за любое противоправное и противозаконное использование материалов, опубликованных в энциклопедии, редакция ответственности не несет.

Привет, друзья! Наверняка кто-то из вас уже когда-то читал или лично сталкивался с электромагнитным ускорителем Гаусса, который более известен под «Пушкой Гаусса».

Традиционная Гаусс-пушка строится с применением труднодоступных или довольно дорогих конденсаторов большой емкости, также для осуществления правильной зарядки и выстрела требуется некоторая обвязка (диоды, тиристоры и так далее). Это может быть довольно сложно для людей, которые ничего не понимают в радиоэлектронике, но желание поэкспериментировать не дает сидеть на месте. В этой статье я попытаюсь подробно рассказать о принципе работы пушки и о том, как можно собрать упрощенный до минимума ускоритель Гаусса.

Главной частью пушки является катушка. Как правило ее мотают самостоятельно на каком-либо диэлектрическом немагнитном стержне, который в диаметре несильно превышает диаметр снаряда. В предложенной конструкции катушку можно намотать даже «на глазок», потому что принцип действия просто не позволяет произвести никаких расчетов. Достаточно добыть медный или алюминиевый провод диаметром 0.2-1 мм в лаковой или силиконовой изоляции и намотать на стволе 150-250 витков так, чтобы длинна намотки одного ряда была примерно 2-3 см. Можно использовать и готовый соленоид.



При прохождении электрического тока через катушку в ней возникает магнитное поле. Проще говоря, катушка превращается в электромагнит, который втягивает железный снаряд, а чтобы он не оставался в катушке, во время его вхождения в соленоид нужно просто отключить подачу тока.

В классических пушках это достигается за счет точных расчетов, применения тиристоров и других компонентов, которые «обрежут» импульс в нужный момент. Мы же просто будем разрывать цепь «когда получится». Для экстренного разрывания электрической цепи в быту используют плавкие предохранители, их можно использовать в нашем проекте, однако более целесообразно заменить их лампочками от елочной гирлянды. Они рассчитаны на питание низким напряжением, поэтому при питании от сети 220В мгновенно перегорают и разрывают цепь.



Готовое устройство состоит всего из трех деталей: катушки, сетевого кабеля и лампочки, подключенной последовательно катушке.


Многие согласятся, что использование пушки в таком виде крайне неудобно и неэстетично, а порой даже очень опасно. Поэтому я смонтировал устройство на небольшом кусочке фанеры. Для катушки установил отдельные клеммы. Это дает возможность быстро менять соленоид и экспериментировать с разными вариантами. Для лампочки я установил два тонких обрезанных гвоздя. Концы проводов лампочки просто обкручиваются вокруг них, поэтому лампочка меняется очень быстро. Обратите внимание, что сама колба находится в специально проделанном отверстии.


Дело в том, что при выстреле происходит большая вспышка и искры, поэтому я посчитал нужным немного отвести вниз эту «струю». Схема простого одноступенчатого настольного электромагнитного ускорителя масс или просто – Гаусс пушка. Названа по имени немецкого учёного Карла Гаусса. В моем случае ускоритель состоит из зарядки, токоограничивающая нагрузка, двух электролитических конденсаторов, вольтметра и соленоида.

Итак, разберем все по порядку. Зарядка пушки работает от сети 220 вольт. Зарядка состоит из конденсатора 1,5 мкФ 400 В. Диоды 1N4006. Напряжение на выходе 350 В.


Далее идет токоограничивающая нагрузка - Н1, в моем случае лампа накаливания, но можно использовать мощный резистор 500 – 1000 Ом. Ключ S1 ограничивает зарядку кондесаторов. Ключ S2 подает разряд мощный разряд тока на соленойд, поэтому S2 должен выдерживать большой ток, в своем случае я использовал кнопку от электрического щитка.


Конденсаторы С1 и С2, каждый 470 мкФ 400 В. В сумме получается 940 мкФ 400 В. Подключать конденсаторы нужно соблюдая полярность и напряжение на них во время зарядки. Контролировать напряжение на них можно вольтметром.


И теперь самое сложное в нашей конструкции гаусс пушки – соленоид. Наматывается он на диэлектическом стержне. Внутренний диаметр ствола 5-6 мм. Провод использовал ПЭЛ 0.5. Толщина катушки 1.5 см. Длина 2 см. Мотая соленоид, нужно каждый слой изолировать супер клеем.


Ускорять нашей электромагнитной гаусс пушкой мы будем обрезки гвоздей или самодельные пули толщиной 4-5 мм, длинной с катушку. Более легкие пули летают на большее расстояние. Более тяжелые летают на расстояние меньше, но энергия у них больше. Мой гаусс ган пробивает пивные банки и стреляет на 10-12 метров в зависимости от пули.

И ещё, для ускорителя лучше подбирать провода потолще, чтобы было меньше сопротивления в цепи. Будьте крайне осторожны! Во время изобретения ускорителя меня несколько раз било током, соблюдайте правила электробезопастности и уделяйте внимание надёжности изоляции. Удачи в творчестве.

Обсудить статью ГАУСС ПУШКА

.
В этой статье Константин, мастерская How-todo, покажет как сделать портативную пушку Гаусса.

Проект делался просто по фану, так что цели установить какие-либо рекорды в Гауссо-строении не было.


На самом деле Константину даже стало лень рассчитывать катушку.


Давайте для начала освежим в памяти теорию. Как вообще работает пушка Гаусса.

Мы заряжаем конденсатор высоким напряжением и разряжаем его на катушку из медного провода, находящуюся на стволе.

При протекании по ней тока создается мощное электромагнитное поле. Пуля из ферромагнетика втягивается внутрь ствола. Заряд конденсатора расходуется очень быстро и, в идеале, ток через катушку перестает течь в момент, когда пуля находится посередине.


После чего она продолжает лететь по инерции.

Перед тем, как перейдём к сборке следует предупредить, что работать с высоким напряжением нужно очень аккуратно.

Особенно, при использовании таких больших конденсаторов, это может быть весьма опасно.


Будем делать одноступенчатую пушку.

Во-первых, из-за простоты. Электроника в ней практически элементарна.

При изготовлении многоступенчатой системы нужно как-то коммутировать катушки, рассчитывать их, устанавливать датчики.


Во-вторых, многоступенчатый девайс просто бы не поместился в задуманный форм-фактор пистолета.


Ибо даже сейчас корпус забит полностью. За основу были взяты подобные переломные пистолеты.


Корпус будем печатать на 3D принтере. Для этого начинаем с модели.


Делаем его во Fusion360 все файлы будут в описании, если вдруг кто захочет повторить.


Постараемся как можно компактнее уложить все детали. Кстати, их совсем немного.
4 аккумулятора 18650, в сумме дающие примерно 15В.
В их посадочном месте в модели предусмотрены углубления для установки перемычек.


Которые сделаем из толстой фольги.
Модуль, повышающий напряжение аккумуляторов до примерно 400 вольт для зарядки конденсатора.


Сам конденсатор, а это банка 1000 мкФ 450 В.


И последнее. Собственно катушка.


Остальные мелочи типа тиристора, батарейки для его открытия, кнопки пуска можно расположить навесом или приклеить к стенке.


Так что отдельных посадочных мест для них не предусмотрено.
Для ствола понадобится немагнитная трубка.


Будем использовать корпус от шариковой ручки. Это значительно проще, чем допустим печатать его на принтере и затем шлифовать.


Наматываем на каркас катушки медный лакированный провод диаметром 0,8 мм, прокладывая между каждым слоем изоляцию. Каждый слой должен быть жестко зафиксирован.


Мотаем каждый слой максимально плотно, виток к витку, слоев делаем столько, сколько поместится в корпус.


Рукоять сделаем из дерева.


Модель готова, можно запускать принтер.


Почти все детали сделаны соплом 0,8 мм и только кнопка, удерживающая ствол, сделана соплом 0,4 мм.


Печать заняла около семи часов, так вышло что остался только розовый пластик.
После печати аккуратно очищаем модель от поддержек. В магазин покупаем грунт и краску.


Использовать акриловую краску не получилось, но она отказалась нормально ложится даже на грунт.
Для покраски PLA пластика существуют специальные спреи и краски, которые будут прекрасно держаться и без подготовки.
Но такие краски не нашлись, получилось корявенько конечно.

Красить пришлось наполовину высунувшись в окно.


Скажем мы что неровная поверхность - это такой стиль, и вообще так и планировалось.
Пока идет печать и сохнет краска, займемся рукоятью.
Дерева подходящей толщины не нашлось, поэтому склеим два куска паркета.


Когда он просох, придаем ему грубую форму при помощи лобзика.


Немного удивимся, что аккумуляторный лобзик без особых трудностей режет 4см древесины.


Далее при помощи дремеля и насадки скругляем углы.


Из-за малой ширины заготовки, наклон рукояти получается не совсем такой, как хотелось.


Сгладим эти неудобства эргономичностью.


Затираем неровности насадкой с наждачкой, вручную проходимся 400-й.


После зачистки покрываем маслом в несколько слоев.


Крепим рукоять на саморез, предварительно просверлив канал.


Финишной наждачкой и надфилями подгоняем все детали друг к другу, чтобы все закрывалось, держалось и цеплялось, как нужно.


Можно переходить к электронике.
Первым делом устанавливаем кнопку. Примерно прикинув так, чтобы она в будущем не особо мешалась.


Далее собираем отсек для аккумуляторов.
Для этого нарезаем фольгу на полоски и приклеиваем ее под контакты батарей. Батареи соединяем последовательно.


Все время проверяем чтобы был надежность контакта.
Когда с этим покончено, можно подключить высоковольтный модуль через кнопку, а к нему конденсатор.


Можно даже попробовать его зарядить.
Выставляем напряжение около 410 В, чтобы разряжать его на катушку без громких хлопков замыкающихся контактов, нужно использовать тиристор, который работает как выключатель.


А чтобы он замкнулся, достаточно небольшого напряжения в полтора вольта на управляющем электроде.


К сожалению оказалось, что повышающий модуль имеет среднюю точку, а это не позволяет без особых ухищрений брать управляющее напряжение с уже установленных аккумуляторов.

Поэтому берем пальчиковую батарейку.


А маленькая тактовая кнопка служит курком коммутирая через тиристор большие токи.


На этом все бы и закончилось, но два тиристора не выдержали таких издевательств.
Так что пришлось подбирать тиристор помощнее, 70TPS12, он выдерживает 1200-1600В и 1100А в импульсе.


Раз проект все равно заморозился на недельку, докупим еще и детали для того, чтобы сделать индикатор заряда. Он может работать в двух режимах, зажигая только один диод, сдвигая его, либо поочередно зажигая все.


Второй вариант выглядит более красиво.


Схема достаточно простая, но на али можно купить уже готовый такой модуль.


Добавив пару мегаомных резисторов на вход индикатора, можно подключать его прямо на конденсатор.
Новый тиристор, как и планировалось, с легкостью пропускает мощные токи.


Единственное, он не закрывается, то есть перед выстрелом нужно выключить зарядку дабы конденсатор мог полностью разрядиться, и тиристор перешел в исходное состояние.

Этого можно было избежать, будь преобразователь с одно-полупериодным выпрямителем.
Попытки переделать имеющейся успехов не принесли.

Можно приступать к изготовлению пули. Они должны магнититься.


Можно взять вот такие чудные дюбель-гвозди, они имеют диаметр 5,9 мм.


И идеально заходят ствол, остается лишь отрезать шляпку, и чуток заострить.


Вес пульки получился 7,8 г.


Скорость, к сожалению, сейчас замерить нечем.

Заканчиваем сборку проклейкой корпуса и катушки.


Можно тестировать, эта игрушка неплохо дырявит алюминиевые банки, пробивает картонки, да и вообще чувствуется мощь.


Хотя многие утверждают, что Гаусс-пушки бесшумные, она немного хлопает при выстреле, даже без пули.


При прохождении больших токов через провод катушки, хоть это и происходит в доли секунды, она нагревается и немного расширяется.
Если пропитать катушку эпоксидной смолой, можно частично избавиться от этого эффекта.

Самоделку представил для Вас Константин, мастерская How-todo.

Всем привет. В данной статье рассмотрим, как изготовить портативную электромагнитную пушку Гаусса, собранную с применением микроконтроллера. Ну, насчет пушки Гаусса я, конечно, погорячился, но то, что это – электромагнитная пушка, нет сомнения. Данное устройство на микроконтроллере было разработано для того, чтобы обучить начинающих программированию микроконтроллеров на примере конструирования электромагнитной пушки своими руками.Разберем некоторые конструктивные моменты как в самой электромагнитной пушке Гаусса, так и в программе для микроконтроллера.

С самого начала нужно определиться с диаметром и длиной ствола самой пушки и материалом, из которого она будет изготовлена. Я применил пластиковый футляр диаметром 10 мм из-под ртутного термометра, поскольку он у меня валялся без дела. Вы можете использовать любой доступный материал, обладающий не ферромагнитными свойствами. Это стекло, пластик, медная трубка и т. д. Длина ствола может зависеть от количества применяемых электромагнитных катушек. В моем случае используется четыре электромагнитных катушки, длина ствола составила двадцать сантиметров.

Что касается диаметра применяемой трубки, то в процессе работы электромагнитная пушка показала, что нужно учитывать диаметр ствола относительно применяемого снаряда. Проще говоря, диаметр ствола не должен намного превышать диаметр применяемого снаряда. В идеале, ствол электромагнитной пушки должен подходить под сам снаряд.

Материалом для создания снарядов послужила ось от принтера диаметром пять миллиметров. Из данного материала и были изготовлены пять болванок длиной 2,5 сантиметра. Хотя также можно применять стальные болванки, скажем, из проволоки или электрода – что найдется.

Нужно уделить внимание и весу самого снаряда. Вес по возможности должен быть небольшим. Мои снаряды слегка тяжеловаты получились.

Перед созданием данной пушки были проведены эксперименты. В качестве ствола использовалась пустая паста от ручки, в качестве снаряда – иголка. Иголка с легкостью пробивала обложку журнала, установленного неподалеку от электромагнитной пушки.

Поскольку оригинальная электромагнитная пушка Гаусса строится по принципу заряда конденсатора большим напряжением, порядка трехсот вольт, то в целях безопасности начинающим радиолюбителям следует запитывать её низким напряжением, порядка двадцати вольт. Низкое напряжение приводит к тому, что дальность полета снаряда не очень большая. Но опять же, всё зависит от количества применяемых электромагнитных катушек. Чем больше электромагнитных катушек применяется, тем больше получается ускорение снаряда в электромагнитной пушке. Также имеют значение диаметр ствола (чем меньше диаметр ствола, тем снаряд летит дальше) и качество намотки непосредственно самих электромагнитных катушек. Пожалуй, электромагнитные катушки – самое основное в устройстве электромагнитной пушки, на это нужно обратить серьёзное внимание, чтобы добиться максимального полета снаряда.

Я приведу параметры своих электромагнитных катушек, у вас они могут быть другими. Катушка наматывается проводом диаметром 0,2 мм. Длина намотки слоя электромагнитной катушки составляет два сантиметра и содержит шесть таких рядов. Каждый новый слой я не изолировал, а начинал намотку нового слоя на предыдущий. Из-за того, что электромагнитные катушки запитываются низким напряжением, вам нужно получить максимальную добротность катушки. Поэтому все витки наматываем плотно друг другу, виток к витку.

Что касается подающего устройства, то тут особые пояснения не нужны. Все паялось из отходов фольгированного текстолита, оставшегося от производства печатных плат. На рисунках все подробно отображено. Сердцем подающего устройства является сервопривод SG90, управляемый микроконтроллером.

Подающий шток изготовлен из стального прутка диаметром 1,5 мм, на конце штока запаяна гайка м3 для сцепления с сервоприводом. На качалке сервопривода для увеличения плеча установлена загнутая с двух концов медная проволока диаметром 1,5 мм.

Данного нехитрого устройства, собранного из подручных материалов, вполне хватает, чтобы подать снаряд в ствол электромагнитной пушки. Подающий шток должен полностью выходить из загрузочного магазина. В качестве направляющей для подающего штока послужила треснувшая латунная стойка с внутренним диаметром 3 мм и длиной 7 мм. Жалко было выбрасывать, вот и пригодилось, собственно, как и кусочки фольгированного текстолита.

Программа для микроконтроллера atmega16 создавалась в AtmelStudio, и является полностью открытым проектом для вас. Рассмотрим некоторые настройки в программе микроконтроллера, которые придется произвести. Для максимально эффективной работы электромагнитной пушки вам понадобится настроить в программе время работы каждой электромагнитной катушки. Настройка производится по порядку. Сначала подпаиваете в схему первую катушку, все остальные не подключаете. Задаете в программе время работы (в миллисекундах).

Прошиваете микроконтроллер, и запускаете программу на микроконтроллере. Усилия катушки должно хватать на то, чтобы втянуть снаряд и придать начальное ускорение. Добившись максимального вылета снаряда, подстраивая время работы катушки в программе микроконтроллера, подключаете вторую катушку и также настраиваете по времени, добиваясь еще большей дальности полета снаряда. Соответственно, первая катушка остается включенной.

PORTA |=(1 PORTA &=~(1

Таким способом настраиваете работу каждой электромагнитной катушки, подключая их по порядку. По мере увеличения количества электромагнитных катушек в устройстве электромагнитной пушке Гаусса скорость и, соответственно, дальность снаряда должны также увеличиваться.

Данную кропотливую процедуру настройки каждой катушки можно избежать. Но для этого придется модернизировать устройство самой электромагнитной пушки, установив датчики между электромагнитными катушками для отслеживания перемещения снаряда от одной катушки к другой. Датчики в сочетании с микроконтроллером позволят не только упростить процесс настройки, но и увеличат дальность полета снаряда. Данные навороты я не стал делать и усложнять программу микроконтроллера. Целью было реализовать интересный и несложный проект с применением микроконтроллера. Насколько он интересен, судить, конечно, вам. Скажу честно, я радовался, как ребенок, «молотя» из данного устройства, и у меня созрела идея более серьезного устройства на микроконтроллере. Но это уже тема для другой статьи.

Программа и схема -

9,830 Просмотры

Довольна мощная модель знаменитой Гаусс пушки, которую можно сделать своими руками из подручных средств. Данная самодельная Гаусс пушки изготавливается очень просто, имеет лёгкую конструкцию, всё используемые детали найдутся у каждого любителя самоделок и радиолюбителя. С помощью программы расчёта катушки, можно получить максимальную мощность.

Итак, для изготовления Пушка Гаусса нам потребуется:

  1. Кусок фанеры.
  2. Листовой пластик.
  3. Пластиковая трубка для дула ∅5 мм.
  4. Медный провод для катушки ∅0,8 мм.
  5. Электролитические конденсаторы большой ёмкости
  6. Пусковая кнопка
  7. Тиристор 70TPS12
  8. Батарейки 4X1.5V
  9. Лампа накала и патрон для неё 40W
  10. Диод 1N4007

Сборка корпуса для схемы Гаусс пушки

Форма корпуса может быть любой, не обязательно придерживаться представленной схеме. Что бы придать корпусу эстетический вид, можно его покрасить краской из баллончика.

Установка деталей в корпус для Пушки Гаусса

Для начала крепим конденсаторы, в данном случае они были закреплены на пластиковые стяжки, но можно придумать и другое крепление.

Затем устанавливаем патрон для лампы накала на внешней стороне корпуса. Не забываем подсоединить к нему два провода для питания.

Затем внутри корпуса размещаем батарейный отсек и фиксируем его, к примеру саморезами по дереву или другим способом.

Намотка катушки для Пушки Гаусса

Для расчета катушки Гаусса можно использовать программу FEMM, скачать программу FEMM можно по этой ссылке https://code.google.com/archive/p/femm-coilgun

Пользоваться программой очень легко, в шаблоне нужно ввести необходимые параметры, загрузить их в программу и на выходе получаем все характеристики катушки и будущей пушки в целом, вплоть до скорости снаряда.

Итак приступим к намотке! Для начала нужно взять приготовленную трубку и намотать на неё бумагу, используя клей ПВА так, что бы внешний диаметр трубки был равен 6 мм.

Затем просверливаем отверстия по центру отрезков и насаживаем из на трубку. С помощью горячего клея фиксируем их. Расстояние между стенками должно быть 25 мм.

Насаживаем катушку на ствол и приступаем к следующему этапу…

Схема Гаусс Пушки. Сборка

Собираем схему внутри корпуса навесным монтажом.

Затем устанавливаем кнопку на корпус, сверлим два отверстия и продеваем туда провода для катушки.

Для упрощения использования, можно сделать для пушки подставку. В данном случае она была изготовлена из деревянного бруска. В данном варианте лафета были оставлены зазоры по краям ствола, это нужно для того что бы регулировать катушку, перемещая катушку, можно добиться наибольшей мощности.

Снаряды для пушки изготавливаются из металлического гвоздя. Отрезки делаются длиной 24 мм и диаметром 4 мм. Заготовки снарядов нужно заточить.

Подпишитесь на новости

Всем привет. В данной статье рассмотрим, как изготовить портативную электромагнитную пушку Гаусса, собранную с применением микроконтроллера. Ну, насчет пушки Гаусса я, конечно, погорячился, но то, что это – электромагнитная пушка, нет сомнения. Данное устройство на микроконтроллере было разработано для того, чтобы обучить начинающих программированию микроконтроллеров на примере конструирования электромагнитной пушки своими руками.Разберем некоторые конструктивные моменты как в самой электромагнитной пушке Гаусса, так и в программе для микроконтроллера.

С самого начала нужно определиться с диаметром и длиной ствола самой пушки и материалом, из которого она будет изготовлена. Я применил пластиковый футляр диаметром 10 мм из-под ртутного термометра, поскольку он у меня валялся без дела. Вы можете использовать любой доступный материал, обладающий не ферромагнитными свойствами. Это стекло, пластик, медная трубка и т. д. Длина ствола может зависеть от количества применяемых электромагнитных катушек. В моем случае используется четыре электромагнитных катушки, длина ствола составила двадцать сантиметров.

Что касается диаметра применяемой трубки, то в процессе работы электромагнитная пушка показала, что нужно учитывать диаметр ствола относительно применяемого снаряда. Проще говоря, диаметр ствола не должен намного превышать диаметр применяемого снаряда. В идеале, ствол электромагнитной пушки должен подходить под сам снаряд.

Материалом для создания снарядов послужила ось от принтера диаметром пять миллиметров. Из данного материала и были изготовлены пять болванок длиной 2,5 сантиметра. Хотя также можно применять стальные болванки, скажем, из проволоки или электрода – что найдется.

Нужно уделить внимание и весу самого снаряда. Вес по возможности должен быть небольшим. Мои снаряды слегка тяжеловаты получились.

Перед созданием данной пушки были проведены эксперименты. В качестве ствола использовалась пустая паста от ручки, в качестве снаряда – иголка. Иголка с легкостью пробивала обложку журнала, установленного неподалеку от электромагнитной пушки.

Поскольку оригинальная электромагнитная пушка Гаусса строится по принципу заряда конденсатора большим напряжением, порядка трехсот вольт, то в целях безопасности начинающим радиолюбителям следует запитывать её низким напряжением, порядка двадцати вольт. Низкое напряжение приводит к тому, что дальность полета снаряда не очень большая. Но опять же, всё зависит от количества применяемых электромагнитных катушек. Чем больше электромагнитных катушек применяется, тем больше получается ускорение снаряда в электромагнитной пушке. Также имеют значение диаметр ствола (чем меньше диаметр ствола, тем снаряд летит дальше) и качество намотки непосредственно самих электромагнитных катушек. Пожалуй, электромагнитные катушки – самое основное в устройстве электромагнитной пушки, на это нужно обратить серьёзное внимание, чтобы добиться максимального полета снаряда.

Я приведу параметры своих электромагнитных катушек, у вас они могут быть другими. Катушка наматывается проводом диаметром 0,2 мм. Длина намотки слоя электромагнитной катушки составляет два сантиметра и содержит шесть таких рядов. Каждый новый слой я не изолировал, а начинал намотку нового слоя на предыдущий. Из-за того, что электромагнитные катушки запитываются низким напряжением, вам нужно получить максимальную добротность катушки. Поэтому все витки наматываем плотно друг другу, виток к витку.

Что касается подающего устройства, то тут особые пояснения не нужны. Все паялось из отходов фольгированного текстолита, оставшегося от производства печатных плат. На рисунках все подробно отображено. Сердцем подающего устройства является сервопривод SG90, управляемый микроконтроллером.

Подающий шток изготовлен из стального прутка диаметром 1,5 мм, на конце штока запаяна гайка м3 для сцепления с сервоприводом. На качалке сервопривода для увеличения плеча установлена загнутая с двух концов медная проволока диаметром 1,5 мм.

Данного нехитрого устройства, собранного из подручных материалов, вполне хватает, чтобы подать снаряд в ствол электромагнитной пушки. Подающий шток должен полностью выходить из загрузочного магазина. В качестве направляющей для подающего штока послужила треснувшая латунная стойка с внутренним диаметром 3 мм и длиной 7 мм. Жалко было выбрасывать, вот и пригодилось, собственно, как и кусочки фольгированного текстолита.

Программа для микроконтроллера atmega16 создавалась в AtmelStudio, и является полностью открытым проектом для вас. Рассмотрим некоторые настройки в программе микроконтроллера, которые придется произвести. Для максимально эффективной работы электромагнитной пушки вам понадобится настроить в программе время работы каждой электромагнитной катушки. Настройка производится по порядку. Сначала подпаиваете в схему первую катушку, все остальные не подключаете. Задаете в программе время работы (в миллисекундах).

PORTA |=(1<<1); // катушка 1
_delay_ms(350); / / время работы

Прошиваете микроконтроллер, и запускаете программу на микроконтроллере. Усилия катушки должно хватать на то, чтобы втянуть снаряд и придать начальное ускорение. Добившись максимального вылета снаряда, подстраивая время работы катушки в программе микроконтроллера, подключаете вторую катушку и также настраиваете по времени, добиваясь еще большей дальности полета снаряда. Соответственно, первая катушка остается включенной.

PORTA |=(1<<1); // катушка 1
_delay_ms(350);
PORTA &=~(1<<1);
PORTA |=(1<<2); // катушка 2
_delay_ms(150);

Таким способом настраиваете работу каждой электромагнитной катушки, подключая их по порядку. По мере увеличения количества электромагнитных катушек в устройстве электромагнитной пушке Гаусса скорость и, соответственно, дальность снаряда должны также увеличиваться.

Данную кропотливую процедуру настройки каждой катушки можно избежать. Но для этого придется модернизировать устройство самой электромагнитной пушки, установив датчики между электромагнитными катушками для отслеживания перемещения снаряда от одной катушки к другой. Датчики в сочетании с микроконтроллером позволят не только упростить процесс настройки, но и увеличат дальность полета снаряда. Данные навороты я не стал делать и усложнять программу микроконтроллера. Целью было реализовать интересный и несложный проект с применением микроконтроллера. Насколько он интересен, судить, конечно, вам. Скажу честно, я радовался, как ребенок, «молотя» из данного устройства, и у меня созрела идея более серьезного устройства на микроконтроллере. Но это уже тема для другой статьи.

Программа и схема -