Как подключить переменный резистор для регулировки звука. Активный регулятор громкости

Что поставить на вход стереоусилителя на микросхеме TDA1552 для управления звуком? Обычный сдвоенный резистор. А если у нас квадровключение на 4 канала? Кто-то подсказывает — счетверённый регулятор:) А если мы собрали домашний кинотеатр на 6 каналов? Тут уже в бой вступают сложные и дорогостоящие электронные регуляторы громкости на специализированных микросхемах. И такой узел по сложности и цене может превосходить сам усилитель. Тем не менее есть простой выход, как реализовать функцию управления громкостью всего на одном транзисторе. Предлагаемая ниже схема из журнала радиолюбитель, позволяет одним переменным резистором управлять громкостью сразу нескольких каналов.

Собствено сама схема активного регулятора громкости:

Схема регулятора на четыре канала одним резистором:

На одной схеме показан один канал ргулятора громкости, а на другой — сразу 4 канала. Естественно их может быть и 5, и 10. Суть метода заключается в том, что подавая на базу транзистора положительный потенциал через резистор, транзистор открывается и шунтирует вход УНЧ — громкость снижается.

С этой схемой был проведён ряд экспериментов. Выяснилось, что питание базы можно брать начиная от 1,5В. Максимальный предел напряжения определяется ограничительным резистором на 1кОм. Если мы нашли в УНЧ допустим 12В, то и резистор надо увеличить до безопастных для базового тока 30кОм. Ток потребления базовой цепи в открытом состоянии — несколько миллиампер. В общем подберёте.

В открытом состоянии транзистора, возможно будет слышен очень тихий звук из-за падения напряжения на кремниевом кристалле. Чтоб молчание было полным — нужно использовать германиевый транзистор типа МП36 — МП38.
Конденсаторы на входе и выходе электронного регулятора громкости используют неполярные. Транзистор ставим любой маломощный Н-П-Н, типа КТ315, КТ3102, С9014 и т.д. Переменный резистор для электронного регулятора на сопротивление в пределах 10-100кОм. Желательно с линейной характеристикой.

При замыкании движка на массу, все транзисторы закроются и громкость станет максимальной. Перемещая движок к плюсу питания, мы понемногу открываем транзисторы и звук станет затихать. Резистором, что подключен к плюсу питания, выставляем плавность изменения громкости по всему повороту резистора. Чтоб не было так, когда уже после половины поворота громкость исчезла и дальше крутим напрасно. Использование данного электронного регулятора громкости с одной стороны немного увеличит уровень шумов, но с другой — снизит наводки на провода, так как теперь нет необходимости тянуть два раза экранированный провод от выхода предварительного усилителя до входа усилителя мощности.

Начну, пожалуй, с цитаты: "Задача регулирования уровня сигнала - проще говоря, "громкости" - является одной из непростых проблем в схемотехнике звуковой аппаратуры" . Здесь автор, сильно упрощая проблему, приравнивает такие понятия как "уровень сигнала" и "громкость", а затем описывает свой регулятор уровня. Уровень сигнала - это понятие из области схемотехники усилителей звуковых (и не только) частот. Здесь пользуются терминами "регулятор уровня" или "регулятор усиления". А громкость - это понятие из области физиологической акустики, где в ходу"громкость", "уровень громкости" и др .
Понятие "громкость" значительно сложнее термина "уровень сигнала", применяемого аудиоинженерами и звукорежиссерами и обозначающего величину напряжения (в вольтах или децибелах) в разных точках звукоусилительного тракта. Регуляторы уровня, в отличие от регуляторов громкости, - частотноне зависимые устройства. Существует даже такое понятие как "тонкомпен-сированный регулятор громкости" (попахивает тавтологией!), обозначающее регулятор, учитывающий свойства слуха. Стоит упомянуть и термин "физиологический регулятор громкости", аналогичный только что названному. Несомненно, регуляторы громкости в Hi-Fi аппаратуре - это, как правило, тонком-пенсированные, или физиологические. Аппаратуру "высокого конца" (Hi-End) рассматривать не будем, поскольку там выполняются любые прихоти снобов за очень большие деньги. Роскошь обязывает!
Известно, что чувствительность человеческого уха зависит от частоты , и потому одинаково воспринимаемой громкости звука на разных частотах соответствуют разные уровни звукового давления. Графически эта зависимость иллюстрируется "кривыми равной громкости" (рис.1). Чтобы обеспечить высокое качество воспроизведения той или иной звуковой программы, необходимо, ориентируясь на кривые равной громкости, компенсировать соответствующие различия в чувствительности слуха. Эту задачу призваны выполнять тонкомпенсированные регуляторы громкости .

Однако спроектировать такой регулятор далеко не просто. Дело в том, что форма кривых равной громкости неоднозначна. Она зависит от целого ряда факторов, в частности, от акустических свойств помещения прослушивания, от наличия маскирующих шумов, от особенностей слуха самого слушателя и т.д. В результате, необходимое в том или ином случае семейство АЧХ тон компенсированного регулятора громкости также оказывается неоднозначным. И все же неплохие результаты, по оценке слушателей, можно получить, если пользоваться стандартными кривыми равной громкости чистых тонов для плоской звуковой волны. Но их необходимо скорректировать, руководствуясь приведенными ниже соображениями.
При прослушивании музыкальных программ уровень громкости обычно не превосходит 90 фон и может быть уменьшен слушателем до порога слышимости или до уровня шумов в помещении. Для определенности, диапазон регулирования громкости на частотах 1...2 кГц возьмем равным 80 дБ. Будем считать, что АЧХ регулятора линейна, а музыкальная программа сбалансирована по тембру в положении регулятора, соответствующем максимальной громкости (80 фон). Переход от этого уровня громкости к другому, например, 60 фон, требует коррекции АЧХ регулятора.
Для получения с корректированной зависимости на рис.1 проводим горизонтальную линию через деление 80 дБ на оси L (показана пунктирной линией). Затем измеряем расстояния от этой прямой до nнескольких точек, лежащих на кривой равной громкости 80 фон. Далее эти расстояния откладываем вниз от соответствующих точек на кривой равной громкости 60 фон. Через полученные таким образом новые координаты проводим кривую, которая будет скорректированной АЧХ регулятора в положении, соответствующем уровню громкости 60 фон.


Аналогичным образом, относительно кривой равной громкости 80 фон. строятся скорректированные АЧХ при уровнях громкости 40. 20 и 0 (3) фон и получается требуемое для правильной тонкомпенсации семейство АЧХ регулятора громкости. В диапазоне изменения уровня громкости 80 дБ оно показано на рис.2 (сплошные жирные линии).
Теперь необходимо построить тонкомпенсированный регулятор громкости, семейство АЧХ которого приближается к требуемому наилучшим образом. В области частот ниже 2 кГц кривая, соответствующая минимальному коэффициенту передачи, может быть аппроксимирована АЧХ RC-цепи. показанной на рис.За. Эта характеристика левее частоты перегиба f1 (рис.Зб) имеет наклон 6 дБ на октаву. Если резистор R2 этой цепи сделать переменным, а минимальное сопротивление его выбрать много меньше R1. то при регулировании сопротивления R2, наряду с изменением коэффициента передачи цепи, будет изменяться и частота перегиба ее АЧХ. Как видно из рис.2, с учетом аппроксимации в пределах 3 дБ, частота перегиба должна перемещаться в процессе регулирования по линии ЛВ, чтобы обеспечить нужную тонкомпенсацию. Диапазон изменения сопротивления R2 при этом не может быть более 100, так как fа/fв должен изменяться на 80 дБ (в 10000 раз). Во столько же раз должно меняться сопротивление R2.


Совершенно очевидно, что с помощью изменения сопротивления только одного резистора R2 достичь такого сдвига частоты перегиба и изменения коэффициента передачи не удастся. Однако, увеличивая число последовательно соединенных RC-цепей и одновременно уменьшая пределы регулировки резистора R2 в каждой из них. эту проблему можно решить. Уже две такие RC-цепи (постоянная времени второй цепи должна быть в 20...40 раз больше первой) позволяют получить вполне приемлемый результат: отклонение кривых реального семейства АЧХ (пунктирные линии на рис.2) от требуемого (сплошная линия) не превышает 3 дБ.
На частотах выше 2 кГц уменьшение громкости с 80 до 60 фон сопровождается появлением перегиба на кривой 60 фон на частоте 5 кГц с наклоном 3 дБ на октаву. При дальнейшем уменьшении громкости вплоть до порога слухового ощущения {уровень 3 фон) частота перегиба смещается с 5 до 3 кГц, наклон же кривых практически не меняется. В этой области частот кривую 3 фон можно аппроксимировать АЧХ RC-цепи, показанной на рис.4а. Номиналы резисторов R1 и R2 здесь те же, что и в RC-цепи. показанной на рис.За. Изменение сопротивления R2 не приводит к смещению частоты перегиба f2 (рис.4б).
Чтобы увеличение громкости с 60 до 80 фон не сопровождалось подъемом высших звуковых частот, RC-цепь должна обеспечивать частотную компенсацию при максимальном коэффициенте передачи, чего можно достигнуть шунтированием резистора R2 конденсатором С2 такой емкости, при которой соблюдалось бы равенство постоянных времени T2=R1C1 и x3=R2-C2. В этом случае необходимое для регулирования громкости уменьшение сопротивления R2 будет сопровождаться уменьшением постоянной времени тз и сдвигом частоты среза RC-цепи (f3=1/2nR2-C2) в более высокочастотную область, а частота перегиба f2 будет оставаться неизменной, что и обеспечит требуемое соответствие АЧХ RC-цепи кривым равной громкости nе области частот выше 2 кГц.

Пример практической реализации тонкомпенсированного регулятора громкости показан на рис.5 (4, 5]. Сопротивления входящих в него резисторов и конденсаторов можно рассчитать, пользуясь следующими соотношениями:
R1=R3=R:
R4min=R5min=0.01R;
R4max=R5max=10R;
R1C2=R3C3=20MKC;
R4minC4=4000 мкс;
R5minC5=100 мкс;
R5maxC6=20 мкс. Сопротивление R может быть выбрано в пределах 103..106 Ом. На рис.5 R=510 кОм. R5minC5=2000 мкс (4000); R4minC4=100 мкс.
Во избежание шунтирования цепи R5-C5. подключаемый к выходу регулятора усилитель 34 должен иметь большое входное сопротивление и малую входную емкость. Его, в частности, можно выполнить по схеме повторителя напряжения на ОУ с полевыми транзисторами на входе. Выходное сопротивление усилителя, включенного перед регулятором, должно быть в 20 раз меньше сопротивления R2. Переменные резисторы тонкомпенсированного регулятора громкости должны быть сдвоенными. В нашем случае их функции выполняют фоторезисторы R4, R5, а органом регулировки служит резистор R10. изменяющий ток через лампу накаливания HL1. Использующиеся в регуляторе громкости фоторезисторы СФЗ-1 обладают высоким быстродействием (постоянная времени - меньше 0,06 с) и необходимым диапазоном изменения сопротивления. Лампа накаливания (сверхминиатюрная) - НСМ (6,3 Вх20 мА). ток через нее изменяется в пределах 6...18 мА. Фоторезисторы размещаются вплотную к лампе накаливания, и весь регулятор помещается в светонепроницаемый металлический экран.
На рис.5 показан двухканальный регулятор для стереофонического усилителя. В нем необходимо попарно подобрать фоторезисторы в разных каналах так, чтобы при изменении в диапазоне от 104 до 106 Ом их сопротивления отличались не более чем на 20%. В противном случае будет заметен разбаланс каналов во время изменения громкости.
Стереобаланс регулируется резистором R9 в пределах ±6 дБ. Конденсаторы С7, СВ устраняют шорохи и трески, создаваемые переменными резисторами.
Переменный резистор R10 должен иметь линейную характеристику регулирования. Постоянные резисторы - с отклонением сопротивлений от номинального значения не более ±5%. Конденсаторы С1. С4, С5 - бумажные МБМ, остальные - керамические. Емкость конденсатора С6 зависит от емкости монтажа и входной емкости усилителя, подключенного к выходу регулятора громкости. Лампы накаливания должны питаться от стабилизированного источника питания.
Настройка регулятора сводится к обеспечению линейности АЧХ при К„=0 дБ (подбором С6) и проверке идентичности семейства его АЧХ в разных каналах стерео усилителя при разных уровнях громкости.

Другой пример регулятора показан на рис.6. Здесь используются сдвоенные переменные резисторы с линейной зависимостью сопротивления от угла поворота оси (группа "А"). Для стереофонического регулятора нужно применить два сдвоенных переменных резистора. Особых проблем с регулировкой баланса такое решение не вызывает, если на панели, где установлены оба резистора, нанести шкалы уровней громкости.
Попытка применить счетверенный резистор наталкивается на большие трудности; во-первых, он - очень редкая "птица" в наших краях, во-вторых, его резисторы имеют большие разбросы по сопротивлению, и в-третьих, дополнительно требуется регулятор баланса, что не упрощает всю конструкцию. Разбросы же сопротивлений сдвоенных резисторов вполне приемлемы для этой схемы. Если сдвоенные резисторы имеют другое сопротивление, то емкости конденсаторов нужно пересчитать по приведенным соотношениям. Резисторы R3 и R5 служат для прекращения подъема НЧ за пределами звукового nдиапазона.
При верхнем положении движков переменных резисторов коэффициент передачи регулятора равен -6 дБ. Диапазон регулировки на частоте 2 кГц- 80...85 дБ. Отклонение от требуемых АМХ - не более ±2 дБ. если сопротивление нагрузки регулятора больше 1 МОм, а емкость нагрузки менее 50 пФ. Конденсаторы С1. СЗ. С5 - пленочные, остальные - слюдяные. Наладка регулятора - да никакой наладки!
А напоследок я скажу, что если слушать только громкую музыку, то достаточно иметь регулятор уровня с диапазоном регулирования 10... 15 дБ. Но если вы хотите ощутить очарование и от тихой музыки, как бы доносящейся из ближайшего парка, то стройте этот регулятор громкости, не пожалеете!
Литература
1. А.Никитин. Регулятор громкости в Hi-Fi аппаратуре. - Радиохобби, 2002. №2, С.63.
2. Терехов П. О регулировании громкости. - Радио, 1982, №9, С.42.
3. Цвикер Э.. Фельдкеллер Р. Ухо как приемник информации. - М.: Связь. 1971.
4. И.Пугачев. Тонкомпенсированный регулятор громкости. - Радио, 1988. N911.C.35.
5 Авторское свидетельство СССР №1390776. - Бюллетень "Открытия, изобретения...". 1988, №15.

И.ПУГАЧЕВ, г. Минск.

В этой части статьи поговорим об аспектах согласование регулятора громкости Никитина с усилителем.
Для получения заявленных параметров, снижения искажений и обеспечения плавности регулирования громкости регулятор Никитина обязательно должен быть согласован с входным сопротивлением усилителя!

Рассмотрим по порядку:

  1. Общие вопросы согласования регулятора.
  2. Согласование регулятора со схемами на ОУ и транзисторами.
  3. Согласование регулятора с ламповыми каскадами.

1. Общие вопросы согласования.

Для рассмотрения общих нюансов согласования регулятора громкости Никитина с усилителями обратимся к статье «Искажения, возникающие в каскадах на ОУ при регулировании уровня сигнала», автор В.А.Свинтенок.

Целиком приводить её не буду (кому интересно, тот легко найдёт её на просторах Интернета). В ней автор, проведя не совсем корректные и неполные эксперименты, подтвердил известный факт, что усилители в инвертирующем включении звучат лучше и имеют меньшие искажения, чем усилители в неинвертирующем включении. Эту особенность давно заметили и попытались объяснить Дуглас Селф и Николай Сухов (автор того самого «усилителя высокой верности»). Последний пришёл к выводу, что подобный эффект вызван тем, что в неинвертирующем включении переход б-э входного транзистора оказывается вне цепи общей отрицательной обратной связи, из-за чего не компенсируется ёмкость Миллера. Соответственно, для усилителя с полевыми транзисторами на входе подобный эффект либо значительно слабее, либо не наблюдается вовсе.

Та вот, в экспериментах описанных в статье поучаствовал и Никитина. Порой, правда, не совсем корректно. Не понятно, зачем нужно было снимать характеристики ненагруженного регулятора??? Ещё раз повторю, что для обеспечения заявленных параметров (шаг регулировки, равномерность регулировки, диапазон регулировки и т.д.) регулятор обязательно должен быть согласован с нагрузкой !!!

Примечание: в указанной статье Никитина чаще упоминается как « лестничного типа» .

Итак, наиболее интересные и полезные выводы из статьи:

...Как было показано выше, неинвертирующее включение ОУ с резисторами на входах не позволяет реализовать предельный потенциал у большинства микросхем по нелинейным искажениям. Инвертирующее включение дает ряд лучших характеристик: меньшие нелинейные искажения, более короткий и «мягкий» спектр искажений, отсутствие «порога» (резкого возрастания высших гармоник в спектре), на искажения и спектр не оказывает влияние внутреннее сопротивление источника сигнала.

Стандартное построение регулятора уровня с буферным повторителем в инвертирующем включении представлено на Рис.15. На практике такая схема используется довольно редко и связано это со следующим. Чтобы сохранить входное сопротивление схемы на уровне значения сопротивления Rп и закон изменения сопротивления от угла поворота ручки потенциометра необходимо, чтобы для резисторов схемы выполнялось условие R > Rп (в 3 и более раз). Чтобы получить приемлемое входное сопротивление схемы приходится выбирать достаточно высокоомные резисторы R. А это ведет в свою очередь к повышенному уровню шума схемы.

Тем не менее, рассмотрим эту схему в качестве отправной схемы для этого типа включения.

Для схемы, представленной на Рис.15 максимальные искажения будут в верхнем положении движка потенциометра Rп и соответствуют повторителю в инвертирующем включении. Далее по мере снижения уровня сигнала на выходе потенциометра пропорционально начнут снижаться и искажения на выходе ОУ. В связи с чем, охарактеризовать поведение активного элемента в регуляторе достаточно описанием его в одной точке – в точке наблюдения максимальных искажений.

В Таблице 10 приведены коэффициенты гармоник для входного напряжения 2 и 4 вольта для инвертора собранного по схеме Рис.15 при номинале резисторов R = 5кОм и при коэффициенте передачи регулятора Кр = -1.

Таблица 10.

Таблица 10 (1)

Тип мс

OPA 2134

AD 8620

NE 5532

OP 275

U вх(в)

К г7 %(5к)

0,000066

0,000035

0,000062

Таблица 10 (2)

Тип мс

LME 49860

AD 8066

AD 826

JRC 2114

U вх(в)

К г7 %(5к)

0,000012

0,000032

0,000024

0,000092

0,000039

Таблица 10 (3)

Тип мс

THS 4062

AD 8599

LT 1220

AD 825

U вх(в)

К г7 %(5к)

Таблица 10 (4)

Тип мс

LME 49710

LM 6171

U вх(в)

К г7 %(5к)

0,000013

5,2*10 -6

Анализируя данные приведенные в Таблице 10 можно заметить, что выбор микросхем для построения регуляторов уровня сигнала с малыми искажениями значительно шире.

Лучшие микросхемы в этом включении LME49860 , LME49710 и AD8066 . Помимо прекрасных характеристик по нелинейным искажениям у них и прекрасный спектр искажений: 2 – 3 гармоники при входном напряжении четыре вольта.

Прекрасные характеристики и у JRC2114 , OP275 и NE5532 . Спектры у первых двух микросхем содержат 4 – 5 гармоник при входном напряжении 4 вольта, а вот у NE5532 он длинный, с провалом. Ее лучше использовать при входном напряжении меньше четырех вольт.

Хорошие спектры (четыре гармоники) при входном напряжении 4 вольта и у AD826 , THS4062 , LT1220 . Микросхемы OPA2134 , AD5599 и AD8620 лучше использовать при входном напряжении два и менее вольта. У LM6171 в инвертирующем включении искажения существенно выше, а характер и поведение спектра от напряжения питания такое же что и в неинвертирующем включении.

Как было выше сказано, на практике реализовать высокий потенциал по искажениям у данного типа регулятора проблематично из-за присущих этому включению недостатков. Так для получения входного сопротивления близкое к 10кОм необходимо в схеме инвертора выбирать довольно высокоомные резисторы (более 30кОм), что приведет к существенному росту шума регулятора и сократит количество микросхем способных на достаточно качественном уровне работать в этом включении. В значительной мере эти проблемы можно решить, если в этом включении использовать регулятор уровня сигнала «лестничного» типа...

…для осуществления этого необходимо нагрузочный резистор регулятора отключить от общего провода и подключить к инвертирующему входу ОУ, как это показано на Рис.16.

Все достоинства этого регулятора в таком включении сохраняются. При коэффициенте передачи регулятора 0дБ схема представляет собой инвертор с единичным усилением и с входным сопротивлением 10кОм. Максимальные искажения такого регулятора соответствуют и максимальному сигналу на входе инвертора и будут соответствовать значениям данных приведенных в Таблице 10. На входе регулятора можно включить RC цепочку для ограничения высоких частот без опасения увеличения нелинейных искажений. По мере снижения напряжения будут снижаться и искажения, что является нормальным и естественным свойством регулятора в этом включении.

Максимальный коэффициент ослабления сигнала и частотная характеристика определяются максимальным затуханием регулятора и его частотной характеристикой

Забегая несколько вперед, можно сказать, что это одно из лучших решений позволяющее получить минимально достижимые нелинейные искажения с «мягким» и коротким спектром. В этом включении достижимы искажения, не превышающие уровень единиц стотысячных при 4 вольтах на входе с монотонным снижением искажений по мере увеличения коэффициента затухания регулятора.

Единственно «не сильное» место регулятора – шумы. Они будут определяться резисторами (эквивалентное значение не более 6кОм) и коэффициентом передачи инвертора по шуму (равное двум)…

Надо также отметить, что в ходе экспериментов при неинвертирующем включении усилителя автором был выявлен рост искажений при увеличении монтажной ёмкости регулятора. Поэтому при сборке схемы в таком варианте следует уделить особое внимание элементам регулятора, их расположению и способу монтажа!

2. Согласование регулятора громкости Никитина со схемами на ОУ и транзисторах.

Пример согласования регулятора громкости Никитина с неинвертирующим усилителем:


увеличение по клику

Здесь входное сопротивление усилителя определяется значением резистора R11. Для согласования с регулятором громкости его номинал выбран 10 кОм. В случае необходимости получения большего усиления от ОУ можно увеличить номинал резистора R12.

Напомню, что в данной схеме не полностью реализуется потенциал операционного усилителя (по параметрам и качеству звучания) и схема довольно чувствительна к ёмкости (качеству) монтажа. Поэтому её рекомендуется использовать только в случае крайней необходимости.

При использовании ОУ в инвертирующем включении указанные выше недостатки устраняются:


увеличение по клику

Здесь входное сопротивление усилителя определяется номиналом резистора R11. Для согласования с регулятором громкости Никитина его значение выбрано 10 кОм.

Внимание! В приведенных схемах номиналы резисторов указаны для согласования регулятора громкости Никитина с нагрузкой 10кОм . Если регулятор рассчитан на другую нагрузку (например с помощью таблицы из ) номиналы указанных резисторов надо изменить на соответствующие.

Пример согласования регулятора с реальным усилителем:

на рисунке представлен входной каскад модернизированного усилителя мощности В.Короля:

Каскад выполнен по двухтактной схеме, и при идентичных параметрах комплиментарных транзисторов Т1 и Т2 за счёт взаимной компенсации базовых токов входное сопротивление такого каскада будет определяться, в основном, номиналом резистора R1.

Для согласования такого усилителя с регулятором громкости Никитина (на 10кОм) достаточно установить резистор R1 номиналом 10кОм:


увеличение по клику

3. Согласование регулятора громкости Никитина с ламповыми каскадами.

Подозреваю, что некоторым читателям входное сопротивление регулятора (10кОм) может показаться относительно низким. Хотя в большинстве современных аппаратов (звуковые карты, CD/DVD проигрыватели) на выходе стоят буферы, которые позволяют подключать нагрузку не менее 2кОм, однако…

Вдруг кто-то захочет нагрузить ламповый каскад на данный регулятор.

В этом случае, если на выходе отсутствует катодный повторитель, для согласования относительно низкого входного сопротивления регулятора с высоким выходным сопротивлением схемы (резистивного лампового каскада или SRPP) можно использовать , предложенный Зызюком (его надо включить между выходом лампового каскада и регулятором громкости):


Настройка схемы (выполняется при закороченном входе – свободный вывод С1 соединить с «общим» проводом схемы):

  1. резистором R4 выставляется ток покоя VT2 равный 35мА.
  2. резистором R1 выставляется «0» постоянного напряжения на выходе схемы.

При указанном токе и напряжениях радиаторы для транзисторов не требуются.

А ещё лучше будет использовать « », подобрав входное и выходное сопротивления.

Удачи в творчестве, качественного звука и работающих схем!