Электричество для дома от ветра. Основы ветроэнергетики. Как работает ветрогенератор? Изучение энергетического потенциала территории

Все ветрогенераторы работают по единому принципу: ветер вращает лопасти, лопасть передает вращение ротору, ротор вырабатывает ток, который

после преобразований в контроллере и инверторе, приобретает нужные потребителю характеристики (частоту 50 Гц, мощность 220 В). Накапливается энергия в аккумуляторах.

Для производства электричества в промышленных масштабах используют ветрогенераторы большой мощности. Обычно — это гигантские трехлопастные ветряки с параллельной осью вращения (так называемая классическая конструкция), но турбинные ветровые установки также получили распространение. Коммерческие ветрогенераторы могут быть построены по иной схеме, но большинство компаний предпочитают использовать ветрогенераторы классической конструкции.

Целесообразность установки

Ветрогенераторы целесообразно устанавливать в местности, где средняя скорость ветра более 8 м/с. Лопасти больших генераторов начинают вращательное движение при ветре 4 м/с; максимальное КПД достигается при 12 м/с. Мощность 3-х лопастного ветрогенератора с горизонтальной осью оценивается по формуле:

  • P – расчетная мощность, кВТ;
  • r – расстояние от центральной точки ротора до конца лопасти, м;
  • v – средняя скорость, м/с;
  • ¶=3,14.

Например, если расстояния от центра ротора до конца крыльев 6 м, скорость ветра 9 м/с, мощность составит примерно 49,5 кВт.

Большинство промышленных электростанций – это обширные области в долинах, на пустынных местностях, где большую часть времени дует ветер, на которых установлено множество одновременно вращающихся генераторов. Также ветряные «фермы» строят прямо в морях.

Грандиозные проекты

Один из самых великих проектов ветроэнергетики — строительство ветряка «Энеркон Е-126». Это крыльчатый генератор с горизонтальной осью вращения и 3-мя лопастями. На сегодняшний день enercon является самым большим и мощным ветряком в мире.

Самый большой в мире промышленный ветрогенератор Enercon E-126

Длина одного крыла 63 м, диаметр окружности, описываемой лопастями – 127 м, высота основания – 135 м. Вес этой огромной конструкции порядка 6000 тонн. Максимальная мощность генератора 7,58 МВт.

Установлено это чудо технической мысли рядом с немецким городом Эмдене в 2007 году. Лопасти ветряка совершают 5-11,7 оборотов/мин, а минимальная скорость ветра для вращения крыльев 3 м/с.

Ветрогенератор Vestas V164-8.0 MW

Компания Vestas возвела ветровой генератор того же типа V164-8.0 MW мощностью 8 МВт. Высота мачты составила 140 м, длина одного крыла 80 м.

Морской ветрогенератор

Большой плавучий ветряк был воздвигнут японцами после взрыва на АЭС Фукусима. Высота мачты около 105 м, мощность 7 МВт.

Ветряная электростанция San Gorgonio Pass, Калифорния. Включает 3218 ветряных генераторов, производящих 615 МВ электроэнергии.

Ветроэлектростанция Мэпл Ридж — крупнейшая в штате Нью-Йорк. Введена в эксплуатации в 2006 году. Ферма на 75% удовлетворят потребности Нью-Йорка в электричестве.

Ветряная ферма Lynn and Dowsing, Линкольншир, Великобритания, работает с 2008 года. Обеспечивает энергией 130 000 домов.

Ветровая электростанция на острове Роса в Антарктиде производит 999 кВт (3 турбины, каждая генерирует по 333 кВт). Установлена ферма на холме Кратер Хил для снабжения станций Скотта (Новая Зеландия) и Макмердо (США). Ветряки на 11% удовлетворяют нужды исследовательских станций.

Арктический поселок Амдерма

Электростанция на ветряных генераторах в российском арктическом поселке Амдерма. Состоит из 4-х турбин, генерирующих до 677,2 МВт (38,6% от потребляемой жителями энергии). Цена 1 кВт ветроэнергии составляет порядка 20 руб, против 65,51 руб, которые жители Амдерма платят за электричество, вырабатываемое дизельным генератором. Дизель, используемый в местных электростанциях, дорог и сильно загрязняет природу. Применение ветрогенераторов позволяет заметно удешевить энергию и улучшить экологическую обстановку. А некоторые северные умельцы мастерят ветрогенераторы своими руками.

Tehachapi Pass, Калифорния, одна из старейших станций, эксплуатируемых ныне. Станция возведена в 1980 году, периодически ремонтируется и обновляется.

Ферма Уитли, Шотландия, включает 140 установок, обеспечивая электричеством 180 000 домов. Это одна из самых мощных станций Европы.

Китайская ветроферма Ганьсу мощностью порядка 8 ГВт. Построена в городе Цзюцюань и постоянно модернизируется. В 2017 году мощность планируется поднять до 17 ГВт, к 2020 – до 20 ГВт.

Летающий ветряк Buoyant Airborne Turbine

Летающий ветряк Buoyant Airborne Turbine – трехлопастной генератор с горизонтальной осью в специальном дирижабле. Находится установка на Аляске, в 600-х метрах над уровнем земли. Рабочим газом дирижабля является гелий. Мощность вентрогенератора 30 кВт.

Ветроферма в российском поселке Усть-Камчатск, Камчатка, вырабатывающая 1 МВт. В комплекс входит 4 ветровых машины.

Ветроэнегростанция Муппандал, Индия, производящая 1500 МВт. Построена в штате Тамил Наду в 2011 году.

Электростанция на ветряках Джайсалмер, Индия, штат Раджистан, производит 1063 МВт. Введена в эксплуатацию в 2012 году.

Электростанция Альта, Калифорния, выдает 1020 МВт энергии. Запущена в 2010 году.

Honda возвела ветровую электростанцию в Бразилии для снабжения своего автомобильного завода. Мощность установки 95 000 МВт/год.

Ветряные фермы Южной Австралии до половины потребляемой энергии. Одна из наиболее мощных станций – Woodlawn.

2 больших ветрогенератора, суммарной мощностью 1520 МВт, построили в Жамбылской области Казахстана.

Строительство другой, более мощной ветровой машины «Sea Titan», ведет американская компания AMSC. Длина лопасти, согласно проекту, будет 95 м. Предполагается, что это будет самый мощный ветрогенератор в мире.

Популярные производители

Промышленные ветровые генераторы российского и импортного производства можно свободно приобрести на российском рынке. Наиболее известные компании-производители ветряков представлены ниже.

  1. «Algatec Solar». Это российский филиал немецкой компании «Algabel Solar» по производству ветрогенераторов и солнечных батарей.
  2. «ALTAL GRUP» — российская компания, специализирующаяся на производстве ветряков и тепловых насосов для различных климатических зон, включая районы крайнего севера.
  3. «Vestas» (реализует продукцию через официальных дилеров) – старейшая немецкая компания по изготовлению ветряков. Основана в 1898 году как кузнечная мастерская, с 1979 производит ветровые установки.
  4. «EDS Group» производство и продажа оборудования для областей энергетики.
  5. «ЭнерджиВинд» — российская компания, выпускающая недорогие ветряки хорошего качества. Ветровой генератор мощностью 1 кВт стоит 54 000 руб.
  6. «Махаон» — российский производитель малошумных ветряков с вертикальной осью.
  7. «ГРЦ-Вертикаль» — Россия, Миасс – производитель альтернативных устройств генерации энергии. Выпускает много разных модификаций ветряков мощностью от 0,1 до 30 кВт.
  8. «СКБ Искра» — производитель ветряков различной конструкции. Стоимость установок до 400 000 руб.
  9. «Сапсан-Энергия» — Московская компания, занимающаяся разработкой и производством агрегатов, генерирующих электричество с помощью экологически чистых источников.
  10. «Ветро Свет» — Санкт-Петербург, производитель ветрогенераторов мощностью до 2-х кВт.

Одним из самых доступных вариантов использования возобновляемых источников энергии — является использование энергии ветра. О том, как самостоятельно сделать расчёт, собрать и установить ветряк, читайте в этой статье.

Классификация ветряных генераторов

Установки классифицируются исходя из следующих критериев ветродвигателя:

  • расположение оси вращения;
  • число лопастей;
  • материал элементов;
  • шаг винта.

ВЭУ, как правило, имеют конструктивное исполнение с горизонтальной и вертикальной осью вращения.

Исполнение с горизонтальной осью — пропеллерная конструкция с одной-двумя-тремя и более лопастями. Это самое распространенное исполнение воздушных энергетических установок по причине высокого КПД.

Исполнение с вертикальной осью — ортогональные и карусельные конструкции на примере роторов Дарье и Савониуса. Последние два понятия следует пояснить, так как оба имеют определенную значимость в деле конструирования ветряных генераторов.

Ротор Дарье — ортогональная конструкция ветродвигателя, где аэродинамические лопасти (две или более), расположены симметрично друг другу на некотором расстоянии и укреплены на радиальных балках. Достаточно сложный вариант ветродвигателя, требующий тщательного аэродинамического исполнения лопастей.

Ротор Савониуса — конструкции ветродвигателя карусельного типа, где две лопасти полуцилиндрической формы расположены одна против другой, образуя в целом форму синусоиды. Коэффициент полезного действия конструкций невысок (около 15%), но может быть увеличен практически вдвое, если лопасти ставить по направлению волны не горизонтально, а вертикально и применять многоярусное исполнение с угловым смещением каждой пары лопастей относительно других пар.

Преимущества и недостатки «ветряков»

Преимущества данных устройств очевидны, особенно применительно к бытовым условиям эксплуатации. Пользователи «ветряков» фактически получают возможность воспроизводства бесплатной электрической энергии, если не считать небольших издержек на сооружение и обслуживание. Однако очевидны также и недостатки ветроэлектрических установок.

Так, чтобы добиться эффективной работы установки, требуется выполнение условий стабильности ветровых потоков. Такие условия человек создать не в силах. Это чисто прерогатива природы. Ещё одним, но уже техническим недостатком, отмечается низкое качество вырабатываемого электричества, в результате чего приходится дополнять систему дорогостоящими электрическими модулями (мультипликаторами, зарядными устройствами, аккумуляторами, преобразователями , стабилизаторами).

Преимущества и недостатки в плане особенностей каждой из модификаций ветродвигателей, пожалуй, балансируют на нулевой отметке. Если горизонтально-осевые модификации отличаются высоким значением КПД, то для стабильной работы требуют применения контроллеров направления ветрового потока и устройств защиты от ураганных ветров. Вертикально-осевые модификации имеют малый КПД, но стабильно работают без механизма слежения за направлением ветра. При этом такие ветродвигатели отличаются малым уровнем шумов, исключают эффект «разноса» в условиях сильных ветров, достаточно компактны.

Самодельные ветровые генераторы

Изготовление «ветряка» собственными руками — задача вполне решаемая. Причём конструктивный и рациональный подход к делу поможет свести до минимума неизбежные финансовые траты. В первую очередь стоит набросать проект, провести необходимые расчёты балансировки и мощности. Эти действия будут не просто залогом успешной постройки ветряной электростанции, но также залогом сохранения в целостности всего приобретенного оборудования.

Начать рекомендуется с постройки микро-ветряка, мощностью в несколько десятков ватт. В дальнейшем полученный опыт поможет создать более мощную конструкцию. Создавая домашний ветряной генератор, не стоит делать упор на получение качественного электричества (220 В, 50 Гц), так как этот вариант потребует существенных финансовых вложений. Разумнее ограничиться использованием изначально полученного электричества, которое можно успешно применять без преобразования для иных целей, к примеру, для поддержки систем отопления и горячего водоснабжения, построенных на электронагревателях (ТЭН) — такие приборы не требуют стабильного напряжения и частоты. Это делает возможным создавать простую схему, работающую напрямую от генератора.

Скорее всего, никто не будет утверждать, что отопление и горячее водоснабжение в доме по значимости уступают бытовой технике и осветительным приборам, для питания которых зачастую стремятся устанавливать домашние ветряки. Устройство ВЭУ именно с целью обеспечения дома теплом и горячей водой — это минимальные затраты и простота конструкции.

Обобщенный проект домашней ВЭУ

Конструктивно домашний проект во многом повторяет промышленную установку. Правда, бытовые решения зачастую базируются на вертикально-осевых ветродвигателях и комплектуются низковольтными генераторами постоянного тока. Состав модулей бытовой ВЭУ при условии получения качественного электричества (220 В, 50 Гц):

  • ветродвигатель;
  • устройство ориентации по ветру;
  • мультипликатор;
  • генератор постоянного тока (12 В, 24 В);
  • модуль заряда аккумуляторных батарей;
  • аккумуляторные батареи (литий-ионные, литий-полимерные, свинцово-кислотные);
  • преобразователь постоянного напряжения 12 В (24 В) в переменное напряжение 220 В.

Bетрогенератор PIC 8-6/2.5

Как это работает? Просто. Ветер крутит ветродвигатель. Крутящий момент передается через мультипликатор на вал генератора постоянного тока. Полученная на выходе генератора энергия через зарядный модуль аккумулируется в батареях. От клемм аккумуляторных батарей постоянное напряжение 12 В (24 В, 48 В) подается на преобразователь, где трансформируется в напряжение, пригодное для питания бытовых электрических сетей.

О генераторах для домашних «ветряков»

Большинство бытовых конструкций ветровых установок , как правило, конструируются с применением малооборотных электродвигателей постоянного тока. Это самый простой вариант генератора, не требующий модернизации. Оптимально — электродвигатели с постоянными магнитами, рассчитанные на питающее напряжение порядка 60-100 вольт. Имеется практика применения автомобильных генераторов, но для такого случая требуется внедрение мультипликатора, так как автогенераторы выдают нужное напряжение только на высоких (1800-2500) оборотах. Один из возможных вариантов — реконструкция асинхронного двигателя переменного тока, но также достаточно сложный, требующий точных расчётов, выполнения токарных работ, установки неодимовых магнитов в области ротора. Есть вариант для трехфазного асинхронного двигателя с подключением конденсаторов одинаковой емкости между фазами. Наконец, существует возможность изготовления генератора с нуля собственными руками. Инструкций на этот счёт имеется масса.

Вертикально-осевой самодельный «ветряк»

Достаточно эффективный и главное недорогой ветрогенератор можно соорудить на основе ротора Савониуса. Здесь в качестве примера рассматривается микро-энергетическая установка, мощность которой не превышает 20 Вт. Однако этого устройства вполне достаточно, например, для обеспечения электрической энергией некоторых бытовых приборов, работающих от напряжения 12 вольт.

Набор деталей:

  1. Лист алюминиевый толщиной 1,5-2 мм.
  2. Труба пластиковая: диаметр 125 мм, длина 3000 мм.
  3. Труба алюминиевая: диаметр 32 мм, длина 500 мм.
  4. Двигатель постоянного тока (потенциальный генератор), 30-60В, 360-450 об/мин, к примеру, электродвигатель модели PIK8-6/2.5.
  5. Контроллер напряжения.
  6. Аккумулятор.

Изготовление ротора Савониуса

Из алюминиевого листа вырезаются три «блина» диаметром 285 мм. По центру каждого просверливаются отверстия под алюминиевую трубу 32 мм. Получается что-то подобное компакт-дискам. От пластиковой трубы отрезаются два куска длиной по 150 мм и разрезаются пополам вдоль. Результат — четыре полукруглых лопасти 125х150 мм. Все три алюминиевых «компакт-диска» надеваются на трубу 32 мм и закрепляются на расстоянии 320, 170, 20 мм от верхней точки строго горизонтально, образуя два яруса. Между дисками вставляются лопасти, по две штуки на ярус и закрепляются строго одна против другой, образуя синусоиду. При этом лопасти верхнего яруса смещаются относительно лопастей нижнего яруса на угол 90 градусов. В итоге получается четырехлопастной ротор Савониуса. Для крепежа элементов можно использовать заклепки, саморезы, уголки или применить другие способы.

Соединение с двигателем и установка на мачту

Вал двигателей постоянного тока с указанными выше параметрами обычно имеет диаметр не более 10-12 мм. Для того чтобы соединить вал двигателя с трубой ветродвигателя, в нижнюю часть трубы запрессовывается латунная втулка, имеющая требуемый внутренний диаметр. Сквозь стенку трубы и втулки просверливается отверстие, нарезается резьба для вкручивания стопорного винта. Далее труба ветродвигателя надевается на вал генератора, после чего соединение жестко фиксируется стопорным винтом.

Оставшаяся часть пластиковой трубы (2800 мм) — это мачта ветроустановки. Генератор в сборе с колесом Савониуса монтируются наверху мачты — просто вставляется внутрь трубы до упора. В качестве упора используется металлическая дисковая крышка, закрепленная на переднем торце мотора, имеющая диаметр несколько больший диаметра мачты. На периферии крышки просверливаются отверстия для крепления растяжек. Так как диаметр корпуса электродвигателя меньше внутреннего диаметра трубы, для выравнивания генератора по центру применяются прокладки либо упоры. Кабель от генератора пропускается внутри трубы и выводится через окно в нижней части. Необходимо учесть при монтаже исполнение защиты генератора от воздействия влаги, используя для этого герметизирующие прокладки. Опять же с целью защиты от осадков, выше соединения трубы ветродвигателя с валом генератора можно установить зонт-колпак.

Установка всей конструкции выполняется на открытой хорошо обдуваемой площадке. Под мачту выкапывается яма глубиной 0,5 метра, нижняя часть трубы опускается в яму, конструкция выравнивается растяжками, после чего яма заливается бетоном.

Контроллер напряжения (простое зарядное устройство)

Изготовленный ветряной генератор, как правило, не способен выдавать напряжение 12 вольт по причине низкой частоты вращения. Максимальная частота вращения ветродвигателя при скорости ветра 6-8 м/сек. достигает значения 200-250 об/мин. На выходе удается получить напряжение порядка 5-7 вольт. Для заряда аккумулятора требуется напряжение 13,5-15 вольт. Выход из положения — применение простого импульсного преобразователя напряжения, собранного, допустим, на основе регулятора напряжения LM2577ADJ. Подавая на вход преобразователя 5 вольт постоянного тока, на выходе получают 12-15 вольт, что вполне достаточно для заряда автомобильного аккумулятора.

Готовый преобразователь напряжения на LM2577

Данный микро-ветрогенератор, безусловно, можно совершенствовать. Увеличить мощность турбины, изменить материал и высоту мачты, добавить преобразователь постоянного напряжения в переменное сетевое напряжение и т. д.

Горизонтально-осевая ветреная электроустановка

Набор деталей:

  1. Пластиковая труба диаметром 150 мм, алюминиевый лист толщиной 1,5-2,5 мм, деревянный брусок 80х40 длиной 1 м, сантехнические: фланец — 3, уголок — 2, тройник — 1.
  2. Электродвигатель постоянного тока (генератор) 30-60 В, 300-470 об/мин.
  3. Колесо-шкив для двигателя диаметром 130-150 мм (алюминий, латунь, текстолит и т. п.).
  4. Стальные трубы диаметром 25 мм и 32 мм и длиной соответственно 35 мм и 3000 мм.
  5. Зарядный модуль для аккумуляторов.
  6. Аккумуляторы.
  7. Преобразователь напряжения 12 В — 120 В (220 В).

Изготовление горизонтально-осевого «ветряка»

Пластиковая труба необходима для изготовления лопастей ветродвигателя. Отрезок такой трубы, длиной 600 мм, разрезается вдоль на четыре одинаковых сегмента. Для ветряка требуются три лопасти, которые изготавливаются из полученных сегментов путем среза части материала по диагонали на всю длину, но не точно с угла на угол, а от нижнего угла к верхнему углу, с небольшим отступом от последнего. Обработка нижней части сегментов сводится к формированию крепёжного лепестка на каждом из трёх сегментов. Для этого по одному краю вырезается квадрат размером примерно 50х50 мм, а оставшаяся часть служит крепежным лепестком.

Лопасти ветродвигателя закрепляются на колесе-шкиве с помощью болтовых соединений. Шкив насаживается непосредственно на вал электродвигателя постоянного тока — генератора. В качестве шасси ветродвигателя используется простой деревянный брусок сечением 80х40 мм и длиной 1 м. Генератор устанавливается на одном конце деревянного бруска. На другом конце бруска монтируется «хвост», изготовленный из листа алюминия. В нижней части бруска, крепится металлическая труба 25 мм, предназначенная исполнять роль вала поворотного механизма. В качестве мачты используется трехметровая металлическая труба 32 мм. Верхняя часть мачты является втулкой поворотного механизма, куда вставляется труба ветродвигателя. Опора мачты изготавливается из листа толстой фанеры. На этой опоре, в виде диска диаметром 600 мм, собирается конструкция из сантехнических деталей, благодаря которой, мачту можно легко поднимать или опускать, либо монтировать — демонтировать. Для крепления мачты применяются растяжки.

Вся электроника ветряной установки монтируется отдельным модулем, интерфейс которого предусматривает подключение аккумуляторов и потребительской нагрузки. В состав модуля входит контроллер заряда батарей и преобразователь напряжения. Подобные устройства можно собирать самостоятельно при наличии соответствующего опыта, либо приобретать на рынке. В продаже имеется множество разных решений, позволяющих получить нужные выходные значения напряжений и токов.

Комбинированные ВЭУ

Комбинированные ВЭУ — серьезный вариант домашнего энергетического модуля. Собственно, комбинация предполагает объединение в единой системе ветряного генератора, солнечной батареи, дизельной или бензиновой электростанции . Комбинировать можно всячески, исходя из возможностей и потребностей. Естественно, когда имеет место вариант — три в одном, это наиболее эффективное и надежное решение.

Также под комбинацией ВЭУ предполагается создание ветроэнергетических установок, имеющих в своём составе сразу две разные модификации. Например, когда в одной связке работают ротор Савониуса и традиционная трехлопастная машина. Первая турбина работает при малых скоростях ветрового потока, а вторая только при номинальных. Тем самым сохраняется эффективность установки, исключаются неоправданные энергетические потери, а в случае с асинхронными генераторами компенсируются реактивные токи.

Комбинированные системы — это варианты технически сложные и затратные для домашней практики.

Расчёт мощности ветряной домашней электростанции

Для расчёта мощности ветряного генератора горизонтально-осевого исполнения можно пользоваться стандартной формулой:

  • N = p · S · V3 / 2
  • N — мощность установки, Вт
  • p — плотность воздуха (1,2 кг/м 3)
  • S — продуваемая площадь, м 2
  • V — скорость потока ветра, м/сек

Например, мощность установки, обладающей максимальным размахом лопастей 1 метр, при скорости ветра 7 м/сек., составит:

  • N = 1,2 · 1 · 343 / 2 = 205,8 Вт

Приближенный расчёт мощности ВЭУ, созданной на основе ротора Савониуса можно посчитать, используя формулу:

  • N = p · R · H · V3
  • N — мощность установки, Вт
  • R — радиус рабочего колеса, м
  • V — скорость ветра, м/сек

К примеру, для упомянутой в тексте конструкции ветроэнергетической установки с ротором Савониуса, значение мощности при скорости ветра 7 м/сек. будет составлять:

  • N = 1,2 · 0,142 · 0,3 · 343 = 17,5 Вт

– устройства специальной конструкции, в которых энергия ветра преобразуется в электрическую. С каждым днем они становятся популярнее. Использующие природные, а главное, возобновляемые источники энергии, удобные и простые ветроэлектростанции, так называемые ветряки, являются прекрасной альтернативой традиционным электростанциям, особенно в частных домах.

Использование энергии ветра

Ветряные мельницы, а точнее принцип их действия, были незаслуженно забыты в двадцатых годах прошлого века. Впрочем, силу ветра не использовали и тогда для получения электрической энергии. Она приводила в действие жернова мельниц, использовалась в качестве движителя для парусных судов, позднее запускала насосы для закачки воды в резервуары, то есть превращалась в механическую энергию.

Ветроэнергетика начала стремительно развиваться в конце шестидесятых годов прошлого, XX столетия. В это время стало катастрофически не хватать традиционных энергоносителей, кроме того, они резко поднялись в цене, все острее становились экологические проблемы, связанные с их использованием.

Способствовал использованию альтернативных источников электроэнергии, в том числе силы ветра, и технический прогресс. Появились новые высокопрочные и достаточно легкие материалы, позволяющие возводить башни до 120 м высотой и огромные лопасти.

Ветра, дующие во многих регионах планеты, в состоянии вращать турбины электростанции с достаточной скоростью, чтобы обеспечивать энергией частные дома, небольшие фермы или школы в сельской местности.

Но в любой бочке меда найдется хотя бы одна ложка дегтя. Ветер невозможно подчинить, он не дует всегда, тем более в одном направлении и с одинаковой скоростью. Технический прогресс не стоит на месте. Если сегодня ветряные электростанции для частного дома, вырабатывающие сотни киловатт электроэнергии, уже не являются большой редкостью, то завтра, может быть, повседневностью станут и станции мощностью в десятки мегаватт. Во всяком случае, уже есть ветроэлектростанции, мощность которых составляет 5 мВт и больше.

Преимущества и недостатки ветроэлектростанций

Ветряные электростанции обладают кроме использования бесплатной энергии ветра и независимости от внешних источников электроэнергии еще несколькими весомыми преимуществами. Не существует экологической проблемы хранения и утилизации отходов, да и сам способ получения энергии один из самых экологичных. Не говоря уже о том, как эстетично выглядит ветряк на фоне неба, достоинством его можно считать, что установка может быть как стационарной, так и передвижной.

Кроме того, сегодня уже можно подобрать ВЭС подходящей модели и мощности или использовать установку, сочетающую использование нескольких источников энергии, традиционных и альтернативных. Это может быть дизель- или солнечно-ветряная электростанция.

ВЭС имеют и недостатки. Во-первых, они шумные настолько, что крупные установки в ночное время приходится отключать. Во-вторых, создают зачастую помехи для воздушных сообщений или радиоволн. В-третьих, их нужно размещать на поистине огромных площадях. И есть еще один существенный недостаток лопастных конструкций – их нужно отключать во время массовых сезонных перелетов птиц.

Типы ветроэлектростанций

По функциональности электростанции ветряные можно разделить на стационарные и передвижные, или мобильные. Мощные стационарные установки требуют проведения целого комплекса подготовительных работ, но они в аккумуляторных батареях способны накапливать достаточное для использования в безветренную погоду количество электроэнергии.

Передвижные электростанции проще по конструкции, неприхотливы, их легко устанавливать и просто эксплуатировать. Обычно они используются для питания электроприборов или в путешествиях.

По конструкции различают крыльчатые и роторные ветроэлектростанции.

По месту установки ВЭС бывают:

  • наземные. Они устанавливаются на возвышенностях и наиболее распространены на сегодняшний день;
  • прибрежные. Строятся в прибрежной зоне морей и океанов, где из-за неравномерного нагревания суши и воды постоянно дуют ветры;
  • оффшорные. Строятся в море на расстоянии 10-15 км от берега, где постоянно дуют морские ветры;
  • плавающие. Они тоже располагаются примерно на таком же расстоянии от берега, как и оффшорные, но на плавающей платформе.

По сферам применения электростанции ветряные бывают промышленные и бытовые.

Крыльчатые ВЭС

Уже привычными стали крыльчатые ВЭС, которые лидируют на рынке ветроэнергетики. На высокой мечте устанавливается лопастной механизм с горизонтальной осью вращения, преимущественно трехлопастной, и его мощность зависит от размаха лопастей. Максимальной скорости вращения такой агрегат достигает, когда лопасти перпендикулярны ветровому потоку, поэтому в его конструкции предусмотрено устройство автоматического поворота оси вращения в виде крыла стабилизатора на малых и электронной системы управления рысканием на более мощных станциях.

Различаются между собой крыльчатые ветроэлектростанции в основном количеством лопастей. Они могут быть многолопастными, двухлопастными, даже с одной лопастью и противовесом.

Роторные ВЭС

Роторные, или карусельные, электростанции ветряные имеют вертикальную ось вращения и не зависят от направления ветра. Это важное преимущество, если используются приземные рыскающие воздушные потоки. Минусом ВЭС такой конструкции является использование многополюсных генераторов, которые работают на малых оборотах и не имеют широкого распространения.

Эти установки тихоходны и, как следствие, не создают большого шума. Кроме того, их достоинством является простота электрических схем, которые не нарушаются при случайных резких порывах ветра.

Специалисты считают, что роторные ВЭС наиболее перспективны для большой ветроэнергетики. Правда, чтобы раскрутить такую установку, к ней нужно приложить внешнюю энергию. Только когда она достигнет определенных аэродинамических показателей, сама переходит в режим генератора из режима двигателя.

Комбинированная система «ветро-дизель»

Недостаток ветроагрегатов - неравномерная подача электроэнергии – в крупных сетях компенсируется большим количеством установок.

Также компенсировать этот недостаток можно, используя комбинированные системы, в которых есть специальные устройства, распределяющие нагрузки между ветроэнергетической установкой (ВЭУ) и дизелем. Поэтому автономные сети небольшой мощности от 0,5 до 4 МВт в паре с дизелем могут надежно и равномерно функционировать.

Современное оборудование, с помощью которого экономится около 65 % жидкого топлива в год, позволяет всего за несколько секунд при необходимости подключить дизель или отключить его.

Бытовые и промышленные ВЭС

Бытовые ветроэнергетические установки имеют мощность от 250 Вт до 15 кВт, могут работать в комплексе с солнечными батареями, с аккумулятором или без него.

Электроэнергия, вырабатываемая бытовыми ВЭС, достаточно дорогая, но часто бывает, что других ее источников просто нет.

Бытовые ветряные электростанции в России производятся с генератором постоянного тока, который заряжает аккумуляторные батареи емкостью до 800 А/ч. От таких батарей в доме могут работать все бытовые приборы: телевизор, электрочайник и др.

Процесс зарядки батарей после отключения нагрузки может быть достаточно долгим, в зависимости от силы ветра и мощности генератора.

Зарубежные бытовые ВЭС на российском рынке тоже есть, они достаточно дороги, но выдают, как правило, меньше половины номинальной мощности.

Промышленные ВЭС отличаются значительно большей мощностью и объединяются, как правило, в единые сети.

Частные ветряные электростанции в основном имеют мощность от 3 до 5, реже 10 кВт. Если среднегодовая скорость ветра в регионе достигает 3-4 м/с, то такая ВЭС может обеспечить электроэнергией средний загородный дом, СТО или небольшое кафе.

Основные характеристики ВЭС

Номинальная мощность является основным показателем, который характеризует все электростанции, ветряные не исключение. Она определяется мощностью, которую вырабатывает генератор при средней скорости ветра 12 м/с, и зависит от типа станции.

Следующим важным показателем является номинальное напряжение ВЭС, которое вырабатывает генератор. Это может быть как 220 В, так и 12 В, и 24 В.

От мощности турбины зависит электрическая мощность генератора. Поскольку мощность турбины тем выше, чем больше ее диаметр и, следовательно, прочней мачта, то этот показатель важен при выборе и расчете конструкции мачты.

Ветроустановка имеет еще несколько характеристик. Важна ее производительность – это количество электроэнергии, которое устройство вырабатывает в год. Необходимо при выборе ВЭУ знать максимальную скорость ветра, которую выдерживает турбина, и его минимальную (пусковую) скорость, при которой она начинает вращаться. Играют роль при выборе и частота вращения турбины, и количество лопастей.

Принцип работы и устройство ВЭС

На ветряной электростанции поток воздуха вращает колесо с лопастями, с которого крутящий момент передается на другие механизмы. Чем больше размеры колеса, тем больший поток воздуха оно захватывает и, следовательно, быстрее вращается.

Если говорить языком физики, линейная скорость ветра преобразовывается в угловую скорость вращения оси генератора, который, в свою очередь, преобразовывает вращательное движение в электрическую энергию, передавая ее через контроллер на аккумуляторы. На выходе из устройства электроэнергия уже пригодна к бытовому использованию.

То есть, малая электростанция ветровая состоит из турбины, лопастей, хвоста (поворотного механизма), мачты с тросами-растяжками, аккумуляторов, контроллера их заряда и инвертора, который преобразовывает напряжение 12 В в 220 В.

Кроме этих устройств промышленная ВЭС содержит еще системы слежения за направлением ветра и его скоростью, состоянием ветрогенератора и защиты от грозовых разрядов. Кроме того, с нагрузками большего масштаба мачта не справляется, и ее заменяют башней, в которой располагается все дополнительное оборудование.

Проектирование ВЭС

Главный показатель, который позволяет принять решение об использовании ветроэлектростанции, - это среднегодовая скорость ветра, которая должна быть не меньше 5 м/с. Правда, сегодня уже существуют легкоразгоняемые ВЭС, предназначенные для электроснабжения частных домовладений, которые начинают работу с минимальной скорости воздушного потока в 3,5 м/с.

Для определения этого показателя используются специальные карты ветров.

В различных климатических зонах России были проведены измерения скорости ветра, чтобы определить, насколько эффективны там ветровые электростанции. Ветряные установки и станции уже действуют в Калининградской области, на Командорских островах, в Мурманске, Республике Саха (Якутии), в Башкортостане.

Принимая решение об установке ветроэнергетической установки или частной ВЭС, стоит для начала обратиться к специалистам, чтобы провести исследования направления и силы ветра с помощью анемометров и построить карты доступности его энергии. По этим данным рассчитывается и разрабатывается проект ВЭУ или станции из нескольких установок, ее технические и геометрические параметры.

Промышленную ВЭС достаточно большой мощности без инвесторов не построить, а грамотно выполненные расчеты и составленный проект позволят определить срок окупаемости проекта и привлечь дополнительные финансы.

Частные ветряные электростанции

По существенно заниженным данным статистики, не учитывающим отдельно стоящие удаленные здания и сооружения, около 30 % частных хозяйств в сельской местности, куда прокладка электрических сетей невозможна по экономическим причинам, не имеют электроснабжения. Не везде даже стоят генераторы на жидком топливе. И это в XXI веке!

Исследования показали, что ветроэнергетические станции различной мощности можно устанавливать во многих районах севера и Крайнего Севера, на Сахалине и Камчатке, в Нижнем Поволжье, Сибири, Карелии и на Северном Кавказе.

На выбор установки влияют потребности заказчика. Если нужно обеспечить работу сельхозтехники, с такой задачей справится маломощный ветрогенератор. Если же нужно электрифицировать целое здание, наладить уличное освещение, обеспечить отопление дома, нужно выполнять проект ветряной электростанции.

Кроме среднемесячной скорости ветра и его направления нужно рассчитать среднемесячное потребление и пиковую нагрузку электроэнергии. Такие расчеты при желании несложно выполнить самостоятельно.

Существует еще один показатель, который влияет на стоимость оборудования и монтажа ВЭУ. Это высота мачты. Чем сооружение выше, тем больше скорость ветра и тем дороже оно обходится. Оптимальной, по утверждению специалистов, является высота мачты на 10 большая, чем самое высокое дерево или здание в радиусе 100 м.

Ветряная электростанция своими руками

Для работы электронасоса, телевизора, освещения или других маломощных электроприборов на дачном участке ветроэнергетическую установку можно сделать собственноручно, если есть некоторые познания в электротехнике.

Сегодня в Европе растут капиталовложения в строительство больших ветроэлектростанций. Массовое строительство снижает себестоимость одного киловатта и приближает ее к цене электроэнергии, полученной из традиционных источников.

Конструкция ветроэлектростанций постоянно совершенствуется, улучшаются аэродинамические и электрические показатели, снижаются потери.

Ветряные электростанции для дома, по оценкам экономистов, становятся самыми эффективными в плане окупаемости проектами в области энергетики. В дальнейшем они обещают независимость от негативных тенденций на этом рынке.

Домашние ветровые электростанции не распространены в нашей стране. Но все чаще возникает интерес к возобновляемым источниками энергии, как к лучшему способу экономить сбережения. Поэтому стоит узнать, как работает устройство, какова его мощность, затраты, цены на покупку и обслуживание установки. Перед приобретением стоит рассчитать, будут ли инвестиции в домашнюю ветровую станцию выгодными.

Что такое ветрогенератор для частного дома, какие бывают виды, мощность, особенности эксплуатации устройства – об этом пойдет речь ниже.

Бытовые ветряки – виды

Генерация электричества на основе неисчерпаемых ресурсов предполагает использование фотогальванических панелей, ветровых или водяных турбин. Эффективные устройства – бытовые ветряные генераторы энергии. Отличительная особенность современных ветрогенераторов – бесшумная, эффективная работа с ветром, дующим со скоростью 2 м/с, что увеличивает возможности их использования.

Станции, устанавливаемые для индивидуальных домашних нужд, имеют мощность от 100 Вт до 5 кВт. Мощность подбирают к индивидуальным потребностям. Существуют ветряные мельницы, которые поддерживают только водяное отопление, и крупные модели для производства и продажи электроэнергии.


Бытовые ветряные мельницы делят на 2 типа:

  1. с горизонтальной осью вращения;
  2. вертикальные.

Ветряки с горизонтальной осью вращения

Наиболее распространенные системы. Недостаток устройства – необходимость расположения пропеллера по отношению к направлению ветра.

Ветрогенератор с горизонтальной осью вращения, фото

Вертикальные ветрогенераторы

Главные преимущества вертикальных устройств:

Ветрогенератор с вертикальной осью вращения, фото

Из каких элементов состоит домашняя ветровая электростанция?

Бытовые ветряные турбины – относительно простые конструкции. Электричество получают в генераторе, приводимом в действие лопастями ротора. В бытовых условиях обычно используются ветрогенераторы с горизонтальной осью вращения ротора.

Наиболее важные элементы ветряка:


Небольшие ветрогенераторы с горизонтальной осью вращения ротора не создают шума, вредных электромагнитных волн. Их можно безопасно разместить прямо на доме, крыше.

Выбор мощности ветрогенератора

Можно предположить, что домашние ветрогенераторы должны обладать наиболее высокой мощностью. Важно помнить, что чем выше потенциальная мощность, тем выше цена ветрогенератора, всего проекта. Инвестиции в профессиональную крупную ветряную электростанцию ​​мощностью 20 кВт связаны с большими расходами. Поэтому большинство инвесторов решают установить модели более слабой производительности.

Пользуются популярностью следующие ветряные электростанции для дома:

Мощность, Вт Характеристики Область применения ветрогенератора
500
  • дешевое предложение;
  • довольно маленькие;
  • тихие;
  • мобильные.
  • питание прудовых насосов;
  • автоматических ворот;
  • радиоприемников.
1000 Не самое дорогое предложение
  • нагрев воды;
  • освещение частного дома (с использованием энергосберегающих светильников);
  • питание основных бытовых приборов.
2000 Подходят для дачи, хорошо изолированных, небольших односемейных частных домов
  • питают основные бытовые приборы;
  • домашнее освещение;
  • водяное отопление.
3000 Решение для энергосберегающих домов.
  • мелкие бытовые приборы;
  • освещение;
  • подогрев воды.
5000 Достаточно для нужд одного дома, в котором проживает семья из нескольких человек. Лишнее электричество можно сбросить в сеть общего пользования.
  • питание бытовой техники;
  • нагрев воды;
  • поддержка центральной отопительной установки.
10000 Редко используются в домашних хозяйствах из-за высокой стоимости установки. Избыточная энергия может быть передана в общественную сеть. Удовлетворит все потребности домашних пользователей одной семьи

Оптимальное расположение ветряков

Мощность ветрогенератора зависит не только от параметров турбины.

  1. Географическое положение . Наиболее выгодное место расположения ветроустановок – местность с сильными ветрами. Оптимальны места, где присутствуют регулярные, сильные порывы ветра, обеспечивающие высокую эффективность ветряка. Наиболее благоприятные условия преобладают в регионах, где много ветреных дней.
  2. Преобладающее направление ветров . Если, например, большинство ветров дуют с запада, нужно обратить особое внимание на западное направление. В данном случае небольшие электростанции, построенные с западной стороны здания, сработают намного эффективнее, чем турбины, расположенные на восточной стороне.
  3. Форма близлежащей территории влияет на эффективность турбин. Чем меньше препятствий, тем лучше условия работы. Любые «препятствия» создают ветровую турбулентность, что вредит работе ветряка. Важно правильно расположить домашние ветрогенераторы на участке.

Ветровые турбины нужно размещать выше поверхности крыши. Обычно их устанавливают:

  • непосредственно на крыше;
  • на мачте длиной 12 метров.

Единственное исключение – небольшие ветряные электростанции, расположенные на холме, расположенном на некотором расстоянии от дома. Пространство не должно быть закрыто деревьями, другими зданиями.

При определении оптимального расположения ветряка на заднем дворе, нужно учитывать здания, естественные препятствия, расположенные за пределами участка.

Например, если в 200 метрах от западной границы участка растет высокий лес, строится многоквартирный дом, инвестиции в бытовые ветряки экономически не обоснованы.


Затраты, цены на ветряки для дачи

После изучения технических аспектов строительства ветряных турбин, нужно прикинуть цену проекта. Сколько стоят ветровые установки? Цены приблизительно следующие:

  • ветряной генератор на 400 Вт – от 33000 рублей;
  • на 600 Вт – от 46000 рублей;
  • на 1000 Вт – от 85000 рублей.

Если ветряной электрогенератор идет не в полном комплекте, потребуется докупить:

  • аккумулятор;
  • генератор;
  • трубчатую мачту для монтажа на крыше;
  • преобразователи (3 шт.);
  • монтажные материалы.


Выгодно ли это?

Чтобы ответить на такой вопрос, нужно рассчитать годовое производство электроэнергии. Домашние ветровые электростанции в течение года способны производить 10-20 % номинальной мощности турбины, умноженной на количество часов в год.

Расчет по этой формуле для ветряка мощностью 5 кВт выглядит так:

  • Минимальное предположение – 5 кВт × 24 часа × 365 дней × 10 % = 4380 кВт.
  • Максимальное предположение – 5 кВт × 24 часа × 365 дней × 20 % = 8760 кВт.

Таким образом, ветроустановки мощностью 5 кВт могут производить в течение года 4380-8760 кВт электроэнергии. Предположим средняя цена одного кВт – 4 рубля. Тогда в течение года получится сэкономить примерно:

  • 4380 × 4 = 17520 рублей;
  • 8760 × 4 = 35040 рублей.

Рассчитав годовую экономию, можно предположить, через сколько лет окупятся инвестиции. Приведенные расчеты лишь теоретические. На практике оказывается, что рентабельность инвестиций бывает весьма сомнительной.

Эффективность ветрогенератора зависит от:

  1. региона, в котором расположится устройство;
  2. цен на электроэнергию;
  3. мощности турбины;
  4. расположения домашней электростанции.

Инвестиции нужно тщательно спланировать, затраты – грамотно рассчитать.


Заключение

Энтузиасты подчеркивают, что домашние ветровые электростанции выгодны, срок их службы составляет до нескольких десятков лет. Однако нужно учитывать определенный риск (включая появление длинных безветренных периодов). Установку не нужно рассматривать, как единственный источник электроэнергии, скорее – как систему поддержки. Оптимальное решение – инвестировать в турбины с меньшей мощностью (например, 3 кВт). Они повлекут более низкие инвестиционные затраты, уменьшат зависимость от местного поставщика электроэнергии.

Ориентировочная цена на строительство мини-ветровой электростанции мощностью 3 кВт почти в 2 раза меньше, чем в случае турбин мощностью 5 кВт.


Делаем ветроэлектростанцию своими руками у себя в частном доме. Ознакомимся с уже существующими промышленными аналогами на рынке и с работами народных умельцев.

Человечество на протяжении всего своего развития не перестает искать дешевые возобновляемые источники энергии, которые могли бы решить многие проблемы энергообеспечения. Одним из таких источников является энергия ветра, для преобразования которой в электрическую энергию, разработаны ветровые энергетические установки (ВЭУ), или, как их чаще называют, ветряные электростанции.

Любому человеку, особенно имеющему частный или загородный дом, хотелось бы иметь свой ветрогенератор, обеспечивающий жилье недорогой электрической энергией. Препятствием этому служит высокая стоимость промышленных образцов ВЭУ и, соответственно, слишком большой срок окупаемости для отдельно взятого владельца жилья, делающий его приобретение невыгодным. Одним из выходов может служить изготовление ветряной электростанции своими руками, позволяющее не только снизить общие затраты на ее приобретение, но и распределить эти затраты на некоторый срок, так как работа осуществляется в течение довольно длительного времени.

Для того чтобы сделать ветряную электростанцию, необходимо определить, позволяют ли погодные условия использовать ветровую энергию в качестве постоянного источника энергии. Ведь, если ветер для вашей местности редкость, вряд ли стоит начинать строительство самодельной ветряной электростанции. Если же с ветром все обстоит благополучно, желательно узнать общие климатические характеристики и, в частности, скорость ветра, с распределением ее по времени. Знание скорости ветра позволит правильно выбрать и сделать своими руками конструкцию ветряной электростанции.

Виды

Ветроэлектростанция своими руками классифицируется по расположению оси вращения и бывают:

  • с горизонтальным расположением;
  • с вертикальным расположением.

Установки с горизонтальным расположением оси называются установками пропеллерного типа и имеют самое широкое распространение в связи с высоким коэффициентом полезного действия. Недостатком этих установок является их более сложная конструкция, затрудняющая самодельные варианты изготовления, необходимость применения механизма следования направлению ветра и большая зависимость работы от скорости ветра — как правило, при малых скоростях эти установки не работают.

Более просты, неприхотливы и мало зависимы от скорости и направления ветра установки с вертикальным расположением рабочего вала — ортогональные с ротором Дарье и карусельные с ротором Савониуса. Недостатком их является весьма малый КПД, составляющий порядка 15%.

Недостатком обеих типов самодельной ветряной электростанции является низкое качество вырабатываемой электроэнергии, требующее дорогостоящих вариантов компенсации этого качества — стабилизирующих устройств, аккумуляторов, электрических преобразователей. В чистом виде электроэнергия пригодна только для использования в активной бытовой нагрузке — лампах накаливания и простых нагревательных устройствах. Для питания бытовой техники электроэнергия такого качества не пригодна.

Конструктивные элементы

Конструктивно, независимо от расположения оси, самодельная полноценная ветряная электростанция должна состоять из следующих элементов:

  • ветряной двигатель;
  • устройство для ориентирования ветряного двигателя по направлению ветра;
  • редуктор или мультипликатор для передачи вращения от ветряного двигателя к генератору;
  • генератор постоянного тока;
  • зарядное устройство;
  • аккумуляторная батарея для накопления электроэнергии;
  • инвертор для преобразования постоянного тока в переменный.

Особенности выбора источника тока

Одним из сложных элементов ветряной электростанции является генератор. Наиболее подходящим для изготовления своими руками является электродвигатель постоянного тока с рабочим напряжением 60-100 вольт. Этот вариант не требует переделки и способен работать с аппаратурой для зарядки автомобильной батареи.

Применение автомобильного источника напряжения затруднено тем, что его номинальная частота вращения составляет порядка 1800-2500 об/мин, а такую частоту вращения при прямом соединении не сможет обеспечить ни одна конструкция ветряного двигателя. В этом случае в составе установки необходимо предусмотреть редуктор или мультипликатор подходящей конструкции для увеличения частоты вращения в необходимых размерах. Скорее всего, этот параметр придется подбирать экспериментальным путем.

Возможным вариантом может стать реконструированный асинхронный двигатель с использованием неодимовых магнитов, но этот способ требует сложных расчетов и токарных работ, что зачастую не приемлет самодельная работа. Имеется вариант с межфазным подключением к обмоткам электродвигателя конденсаторов, емкость которых рассчитывается в зависимости от его мощности.

Изготовление

Учитывая то, что эффективность электростанции с горизонтальной осью имеет лучшие показатели эффективности, а бесперебойность подачи электроэнергии предполагается обеспечивать с помощью накопления энергии в аккумуляторной батарее, предпочтительнее для изготовления своими руками является именно такой вид ВЭУ, который мы и рассмотрим в рамках данной статьи.

Для того что бы сделать такую электростанцию своими руками понадобится следующий инструмент:

  • сварочный аппарат электродуговой сварки;
  • набор гаечных ключей;
  • набор сверл по металлу;
  • электродрель;
  • ножовка по металлу или УШМ с отрезным диском;
  • болты диаметром 6 мм с гайками для крепления лопастей к шкиву и алюминиевого листа к квадратной трубе.

Для изготовления ветряной электростанции своими руками потребуются следующие материалы:

  • пластиковая труба 150 мм длиной 600 мм;
  • лист алюминия размером 300х300 мм и толщиной 2,0 — 2,5 мм;
  • металлическая квадратная труба 80х40 мм и длиной 1,0 м;
  • труба диаметром 25 мм и длиной 300 мм;
  • труба диаметром 32 мм и длиной 4000-6000 мм;
  • медный провод длиной, достаточной для соединения электродвигателя, находящегося на мачте длиной 6 м, и нагрузки, которую будет питать этот источник тока;
  • электродвигатель постоянного тока 500 об/мин;
  • шкив для двигателя диаметром 120-150 мм;
  • аккумуляторная батарея 12 вольт;
  • автомобильное зарядное реле аккумулятора;
  • инвертор 12/220 вольт.

Процесс изготовления своими руками производится в следующем порядке:

Далее, в процессе работы установки, возможно, придется сделать другими размеры и конфигурацию лопастей, передаточное отношение между ветряным двигателем и генератором — каждый ветрогенератор, изготовленный своими руками, индивидуален в силу использования различных компонентов и условий ветрообразования. Первоначально ветряную электростанцию рекомендуют изготавливать небольшой мощности, на которой можно отработать полученную информацию не вкладывая большое количество средств.