Mach3 — программа для управления ЧПУ станками. ЧПУ: принцип работы станков и расшифровка понятия Запуск станка чпу основы что надо знать

Токарный станок с ЧПУ представляет собой универсальное электрооборудование, сочетающие возможности обрабатывающего центра и агрегатного модуля. Токарные станки с ЧПУ способны применяться в широкой сфере деятельности, выполнять различные этапы производства заготовок. Ими оснащают конвейеры для серийного производства продукции, специализированные мастерские.

Современная токарная установка с ЧПУ отличается от аналогов без числового программного управления повышенными функциональными возможностями и способностью выполнять настройки практически по всем параметрам. Современное ПО, то есть программное обеспечение, предоставляет возможность использовать современные токарные агрегаты в автономном режиме, сводя к минимуму участие оператора.

С точки зрения конструкции токарные станки с ЧПУ почти не отличаются от обычных моделей. Основная разница заключается в наличии электронного блока управления компонентами оборудования.

Современные модели станков с ЧПУ, за счет отсутствия необходимости ручной настройки и наличия нескольких режущих инструментов, обеспечивают одновременную работу каждого из них. Все резцы в автоматическом режиме выполняют поставленные им через симулятор задачи. В итоге обработка металлоизделий отличается высокой точностью и качеством.

Модели станков с ЧПУ токарного типа позволяют выполнять следующие операции:

  • Изготавливать сложные по конфигурации детали путем точения внутренних и наружных плоскостей;
  • Точить металлозаготовки вдоль изделия;
  • С высокой точностью отрезать части деталей;
  • Растачивать, формировать пазы, выемки, отверстия;
  • Выполнять резьбу различной конфигурации.

Один из основных элементов станка с модулем ЧПУ — это симулятор. Программное обеспечение требует грамотного составления, чтобы симулятор мог адаптироваться под поставленные перед модулем задачи. При этом разработчики стараются сделать симулятор максимально простым, чтобы упростить работу специалистам.

Резцы, обработка, патронно центровой агрегат контролируется специальными датчиками. От датчиков информация про резцы, патронно центровой станок передается в электронный блок управления, повышая тем самым качество и точность обработки.

Элементы конструкции

Подобные инструменты, оснащенные модулем ЧПУ, кажутся сложными. Но на практике их устройство не намного сложнее, чем стандартные комплексы производства без числового программного управления. Все модели патронно центровых, токарно-винторезных и прочих токарных станков российского или зарубежного производства могут дополнительно оснащаться шаговыми электродвигателями, сервоприводами. Они контролируют резцы, другие инструменты, положение каретки за счет работы ЧПУ.

К основным элементам конструкции токарного станка с числовым программным управлением относят:

  • Станину. Она же основа. Это несущее устройство конструкции для установки всех компонентов станка. Также станина берет на себя функции снижения вибраций, которые возникают на этапах производства. Обработка металла требует прикладывать определенные усилия, которые осуществляют резцы, сверлильные инструменты. Потому это провоцирует возникновение колебаний. Вот почему важно выбирать для работы достаточно тяжеловесный станок или прочно его фиксировать на основании, полу, верстаке;
  • Шпиндельную бабку. С их помощью устанавливают токарные патроны. Бабка получает крутящий момент, передаваемый от электродвигателя. Коробка передает позволяет менять режим скорости вращения шпинделя;
  • Суппорта. Задача суппорта — смещать резцы, режущие инструменты относительно обрабатываемой заготовки. Суппорт включает в себя две каретки — нижнюю и верхнюю. На верхней расположен механизм, удерживающий резцы, сверлильные инструменты. Нижняя позволяет перемещать конструкции по направляющим;
  • Систему подачи. Она способствует перемещению суппорта в одной или двух плоскостях.

Многие модели с целью расширения возможностей производства используют револьверные головки. Их особенность в том, что данные держатели позволяют установить разные резцы одновременно. Это позволяет задействовать станок, применяя различные инструменты для обработки изделий.

Особенности эксплуатации

Обработка на токарных станках, имеющих симулятор, модуль ЧПУ, предусматривает обязательное предварительное изучение модели. Устройство, режимы работы, нюансы патронно центрового станка, резцы, приводной инструмент. Все это требует внимания. Первым делом рекомендуется заглянуть в паспорт конкретного приобретенного вами токарного станка с ЧПУ.

Симулятор позволяет детально разобрать резцы, основные инструменты, опробовать, какой может быть обработка, каким образом функционирует приводной инструмент и пр. Без предварительной работы, которую обеспечивает симулятор, результат может несколько разочаровать.

Рассмотрим некоторые основные особенности эксплуатации токарного оборудования, где есть симулятор, модуль ЧПУ, за счет которых инструменты и резцы выполняют свои этапы работы с минимальным участием оператора.

  • Блок ЧПУ позволяет работать станку в двух режимах;
  • Первый режим — автоматический. С ним обработка деталей осуществляется быстрее, но вы не можете контролировать качество выполняемой работы. Автоматический режим используют, когда требуется массовая обработка деталей, создание больших партий заготовок. Сначала программа прогоняется через симулятор, после чего запускается конкретная обработка деталей;
  • Второй режим — полуавтоматический. Полуавтоматика актуальна, когда обработка подразумевает выполнение сложных операций. Особенность полуавтоматического режима в том, что сначала выполняется обработка по одному этапу, после чего станок выключается. Чтобы обработка продолжилась, оператор своими руками активирует соответствующие режимы работы для включения следующего шага. Полуавтоматику применяют, если требуется изготовить штучные заготовки. Многие токарные станки, оснащенные модулем ЧПУ, позволяют использовать автоматический и полуавтоматический режим работы по мере необходимости.

Требования станка с ЧПУ

Токарная установка с числовым программным управлением обладает широким перечнем преимуществ, о чем свидетельствуют отзывы потребителей. Одно из них — это симулятор, который позволяет предварительно проверить, как будет работать станок в том или ином режиме согласно заданным командам через программное обеспечение.

Одновременно с этим есть недостаток — высокая цена. Современный токарный станок с ЧПУ обойдется покупателю минимум в 1 миллион рублей. И чтобы заплаченные деньги себя оправдали, нужно учитывать требования, которые предъявляет станок при эксплуатации.

  1. Поддерживать внутри помещения температуру и влажность на должном уровне.
  2. Проводить периодическую профилактику, проверку элементов токарного оборудования. Особенно это касается электрических компонентов, шпинделей и кареток.
  3. Адаптировать программное обеспечение под конкретный модуль ЧПУ (CNC), установленный на оборудование. Это особенно актуально, когда по мере эксплуатации планируется расширять функциональные возможности токарного устройства.
  4. Соблюдать требования по качеству используемой электросети. Программные элементы станка отличаются чувствительностью к перепадам в электросети, из-за чего не редко могут возникать сбои.
  5. Обустроить место эксплуатации токарного устройства соответствующим образом, предусмотреть ровное размещение, защиту от вибраций, внешних факторов и пр.

Токарные станки, дополненные модулями ЧПУ — это современное металлообрабатывающее оборудование, рассчитанное на повышенную производительность и высокое качество. Это дорогое удовольствие, но полностью себя оправдывающее в процессе эксплуатации.


Вот мы плавно и добрались до третьей, заключительной руководства по созданию ЧПУ станка. Она будет насыщена полезной информацией о настройке электроники, программы управления станком, и калибровке станка.
Запаситесь терпением – букв будет много!

Программное обеспечение

Так как у нас не получится в полной мере проверить собранный контроллер без компьютера с настроенной программой управления станка, вот с неё и начнём. На этом этапе никакие инструменты не понадобятся, нужны лишь компьютер с LPT портом, руки и голова.

Существует несколько программ для управления ЧПУ станком с возможностью загрузки управляющего кода, например, Kcam, Desk CNC, Mach, Turbo CNC (под DOS), и даже операционная система оптимизированная для работы с ЧПУ станком – Linux CNC.

Мой выбор пал на Mach и в статье я буду рассматривать только эту программу. Поясню свой выбор и опишу несколько достоинств этой программы.

Mach присутствует на рынке несколько лет и зарекомендовал себя, как очень достойное решение для управления ЧПУ станком.
- Большинство используют именно Mach 2/3 для управления своим домашним станком.
- По причине популярности, в сети Интернет довольно много информации о этой программе, возможных проблемах и рекомендации, как их исправить.
- Подробный мануал на русском языке
- Возможность установки на слабый. У меня Mach 3 установлен на Celeron 733 с 256Мб оперативки и при этом всё замечательно работает.
- И главное – полная совместимость с Windows XP, в отличие от, например Turbo CNC, которая заточена под DOS, хотя TurboCNC ещё менее требовательна к железу.

Думаю, этого более чем достаточно для того, чтобы остановили свой выбор на Mach_e, но никто не запрещает попробовать и другой софт. Возможно он вам больше подойдет. Следует упомянуть ещё факт наличия драйвера совместимости с Windows 7. Пробовал я эту штуковину, но получилось не совсем хорошо. Возможно по причине усталости системы – ей уже два года и заросла всяким ненужным мусором, а Mach рекомендуют устанавливать на свежую систему и использовать этот компьютер только для работы со станком. В общем вроде бы всё работает, но моторчики регулярно пропускают шаги, в то время как на компьютере с ХР та же версия Мача ведёт себя замечательно.


Рассмотрим только ось Х., а оставшиеся вы сами настроите по тому же принципу. Параметр Steps per указывает за сколько шагов ваш двигатель делает полный оборот. Стандартный ШД имеет шаг равный 1,8 градуса т.е. мы 360 гр (полный оборот) делим на 1,8 и получаем 200. Таким образом мы нашли, что двигатель в режиме ШАГ проворачивается на 360 гр за 200шагов. Это число и записываем в поле Steps per. Соответственно в режиме ПОЛУШАГ будет не 200, а в 2 раза больше – 400шагов. Что писать в поле Steps per, 200 или 400, зависит от того в каком режиме находится ваш контроллер. Позже, когда будем подключать к станку и калибровать, мы этот параметр изменим, но пока ставьте 200 либо 400.

Velocity – задаётся максимальная скорость передвижения портала. У меня для надежности стоит 1000, но при работе я уменьшаю или увеличиваю её прямо на ходу в главном окне Мача. А вообще, сюда рекомендуют вписывать число на 20-40% меньше от максимально возможной, которую способен выдать ваш двигатель без пропуска шагов.

Пункт Acceleration – ускорение. Значение, вписываемое в эту строку, как и скорость зависит от вашего двигателя и блока питания. Слишком маленькое ускорение значительно увеличит время обработки фигуры сложной формы и рельефа, слишком высокое увеличивает степень риска пропуска шагов при старте т.к. двигатель будет рвать с места. В общем этот параметр выставляется экспериментальным путем. Из своего опыта 200-250 оптимальное значение.

Step pulse и Dir pulse . От 1 до 5, но может быть и больше. В случае, если ваш контроллер не совсем хорошо собран и тогда стабильная работа возможна при большем временном интервале.

Забыл сказать, что скорее всего каждый раз при запуске Мача у вас будет мигать кнопка Reset. Жмакните по ней, иначе она ничего не позволит сделать.

Уфф. Ну теперь давайте попробуем загрузить управляющую программу, пример которой можете скачать в конце статьи. Нажимаем кнопку Load G-Code либо идем в меню File/Load G-Code кому как удобнее и появляется окно открытия управляющей программы.


УП представляет собой обычный текстовый файл, в котором в столбик записаны координаты. Как видно в списке поддерживаемых типов файлов есть формат txt, следовательно его можно открыть и отредактировать обычным блокнотом, как и файлы с расширением nc, ncc, tap. Подправить G-код можно и в самой программе, нажатием кнопки Edit G-Code .

Загружаем УП и видим, что в левом окне появился код, а в правом очертания фигуры, которую будем вырезать.


Для запуска обработки осталось лишь нажать зеленую кнопку Cycle Start , что мы и делаем. В окне координат побежали цифры, а по картинке поехал виртуальный шпиндель, значит процесс обработки успешно начался и наш виртуальный (пока) станок начал обрабатывать деталь.


Если вам по какой-то причине нужно приостановить работу станка – нажимаем Stop. Для продолжения снова нажать Cycle Start и обработка продолжится с того же места. Я так несколько раз прерывался во время дождя, когда нужно было отключить и накрыть станок.

Изменение скорости осуществляется кнопками «+» «-» в колонке Feed Rate , и изначально равно 100% от скорости, выставленной в Motor Tuning. Здесь же можно подстроить скорость передвижения портала под определёные условия обработки. Скорость регулируется в очень большом диапазоне от 10 до 300%.

Вот в принципе и всё о настройке Mach3, надеюсь, что ничего не забыл. Немного позже, когда будем калибровать и запускать станок я расскажу ещё о некоторых нужных настройках. А сейчас возьмите чай, кофе, сигарету (кому что по душе) и устройте себе минутку отдыха, чтобы с новыми силами и свежей головой приступить к настройке электроники станка.


Это желательно делать с установленным шпинделем т.к. вряд ли у вас в домашних условиях получится изготовить абсолютно ровное крепление шпинделя и также ровно прикрутить его к оси Z.

Допустим вы сейчас выровняете ось Z, а когда сделаете крепление и установите шпиндель, удивитесь как криво он там будет располагаться. Первое, что нужно сделать – закрепить в патроне сверло или фрезу. Теперь переводим портал в любое место нашего рабочего (координатного) стола и смотрим угольником есть ли у нас 90 градусов между столом и фрезой. В зависимости от конструкции крепления шпинделя и самой оси Z, корректируете положение фрезы, и добившись желаемого результата фиксируете шпиндель в таком положении.

Ну и ещё одна подстройка – проверка того может ли ваш станок нарисовать прямой угол, когда вы ему это прикажете сделать. Иначе у вас может получиться вот что.


Для себя я вывел два способа, как это можно проверить и подрегулировать, опишу их оба.
1 - Это самая универсальная фреза – обломанное и переточенное сверло 3 мм. За неимением других фрез, используется как для черновой, так и для чистовой обработки. Огромный плюс этой фрезы её дешевизна, из минусов: не получается правильно заточить, и очень ограниченный ресурс. Буквально пара небольших картинок, после чего она начинает жечь дерево. Из всего этого вытекает не очень хорошее качество выполненной работы с последующей обязательной доработкой наждачкой, причем шкурить придётся довольно много.
2 - Прямая двухзаходная фреза 3,175 и 2 мм. Применяется в общем-то для снятия чернового слоя небольших заготовок, но при необходимости можно использовать и как чистовую.
3 - Конические фрезы 3, 2, и 1,5 мм. Применение – чистовая обработка. Диаметр определяет качество и детализацию конечного результата. С фрезой 1,5 мм качество будет лучше, чем с 3 мм, но и время обработки заметно увеличится. Использование конических фрез при чистовой обработке, практически не требует после себя дополнительную обработку шкуркой.
4 - Конический гравер. Используется для гравировки, причем сплав из которого он сделан позволяет выполнять гравировку в том числе и на металле. Ещё одно применение – обработка очень мелких деталей, которые не позволяет выполнить коническая фреза.
5 - Прямой гравер. Используется для раскроя или вырезания. Например вам нужно вырезать…букву «А» из листа фанеры 5 мм. Устанавливаете прямой гравер в шпиндель и вот вам ЧПУ-лобзик . Я его использовал вместо прямой фрезы, когда она сломалась. Качество обработки вполне нормальное, но периодически наматывает на себя длинную стружку. Нужно быть начеку.
Все вышеперечисленные фрезы были с хвостовиком 3,175 мм, а сейчас тяжелая артиллерия.
6 - Прямая и коническая фрезы 8 мм. Применение то же, что и у фрез 3 мм, но для более масштабных работ. Время обработки значительно сокращается, но к сожаление они не подходят для небольших заготовок.

Всё это только малая часть из того количества фрез, которые можно применять в ЧПУ для выполнения различных задач. Начинающих не могу не предупредить о немалой стоимости хороших фрез. К примеру вышеописанные фрезы 8 мм из быстрорежущей стали стоят примерно по 700р. Фреза из твердосплава в 2 раза дороже. Так что игрушки с ЧПУ не получается поставить в ряд самых дешевых хобби.

Фотки

Выкладываю на ваш суд несколько фотографий того, что успел сделать за пару летних месяцев.
Первый пробный блин. Фреза №1. Страшно да? А если и остальное будет такого же качества)))


Первая серьёзная проверка для станка. Размеры 17 на 25 см. Высота рельефа 10 мм, затраченное время - 4 часа.
Как и следующая работа, эта выполнена всё той же фрезой №1. Как видите результат вполне сносный.


А здесь фреза затупилась, и дерево начало подгорать.


Пробовал на что способен конический гравер.


Сестра попросила вырезать ей собачку. Черновая обработка – фреза №2 3 мм, чистовая фреза №3 3 мм. Рельеф 6 мм, время обработки около 1,5часа.


Таблички на дом. Рельеф 10 мм, но уже вогнутый т.к. это значительно сокращает время обработки. Обрабатывается не вся площадь, а только надпись. Время обработки около 2ч, фрезой №5 (прямой гравер).


Моя попытка сделать объёмную деревянную фотографию. Ошибся в сопряжении человека и дерева, но в целом, мне кажется неплохо получилось. Черновая обработка - прямой фрезой 3 мм, чистовая конической 2 мм. Рельеф 5 мм, а вот время обработки не помню.

Читательское голосование

Статью одобрили 89 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

ПРОВЕРЕНО НА ПРАКТИКЕ.

КАК НАСТРОИТЬ МАСШТАБ НА СТАНКЕ

Как добиться того чтобы рисунок на мониторе и его размеры соответствовали размерам которые сделает станок ЧПУ? Почему рисунок "вылазит" за край стола или получается слишком мелким?

Довольно часто приходиться видеть как начинающие и не очень ЧПУшники пытаются высчитать масштабы изделия на стадии разработки станка. Пересчитывают градусы поворота мотора, шаг ШВП, длину пробега и еще массу параметров. Между тем существует простой метод добиться истинного масштаба на станке без таких трудоемких процедур. Этой статьей попытаюсь помочь всем энтузиастам ЧПУ станков.

Исходим из того,что Вы уже определились какая мощность моторов устраивает Вас.

Итак устанавливаете имеющиеся моторы на ось станка

Устанавливаете любое ШВП которое Вы смогли купить или достать.

Если нет ШВП то устанавливаете любой винте "трапеция"

Шаг резьбы винта и угол поворота мотора не имеют значения!

Итак Ваш станок готов, подключен к компьютеру, программа ЧПУ запущена (в нашем случае это МАСН-3)

Рис1 окно настройки двигателей оси

Откройте программу "Блокнот" путь-(Пуск-все программы-стандартные-блокнот)

Наберите в нем программу

G0 X50

G0 Z5

Сохраните программу под любым именем с расширением " txt"

Сохраняйте на "Рабочий стол" для быстрого поиска

Загрузите программу в МАСН-3 (Файл-Открыть Gкоды ).

Поставьте фрезу

Коснитесь ей заготовки с небольшим заглублением

Обнулите все координаты

Запустите написанную вами программу.

Станок начертит отрезок длинной 50мм

Замерьте полученный размер отрезка и поделите полученное число на число в окне программы МАСН-3 по пути -> «Шаг\единицы» в окне по адресу «Конфигурации» далее «Настройка двигателей»

(Первое слева снизу окно подписано " Steps per ")

В окошке уже стоит некое число, например 2000 - это число шагов на 1мм перемещения станка

Разделите это число на 50 (длинна вашего отрезка) и полученное число внесите в это же окно

Отфрезеруйте отрезок еще раз отрезок и проверьте результат, при необходимости повторить настройки.

Пример

Выполнили файл «отрезок» длинна которого задана 50 мм.

Загрузили в МАСН-3

Запустили станок.

Получили на станке размер отрезка равным 55 мм.

Нужно привести его к 50 см (так как мы его задали изначально)

2000\55=36,36

36,36х50=1818

Где 2000-имеющееся число в графе «Шаг\единицы» .

55 - полученный результат на станке (в мм).

36,36 = 1 шагу станка (1мм)

1818 = 50 шагам станка (50мм)

1818 - Это число вписываем в место 2000 в таблицу

Точная подгонка

Начертили на станке файл «отрезок» после корректировок проведенных выше.

Получили:

55,5мм

Делаем

1818 \ 50,5 = 39,60

39,60 х 50 = 1980-Вписываем это число в таблицу

Вот и все Успехов!

ЧПУ - числовое программное управление, позволяющее станку выполнять обработку изделий в автоматическом режиме, заданном специальной программой, заложенной в цифровом коде. Первые токарные и фрезерные станки с числовым программным управлением появились в нашей стране еще в советскую эпоху. По качеству автоматизации, это были довольно примитивные устройства, чего не скажешь о самой конструкции технических объектов, оснащенных ЧПУ.

С развалом СССР, за время становления рыночной экономики, очень многие разработки отечественных инженеров, были незаслуженно забыты, и в их числе станкостроение с ЧПУ. В 90-х годах прекратилось развитие данной сферы, и, по мнению большинства аналитиков, не восстановлено вплоть, до нынешних времен. Это значит, что отечественное производство не выпускает конкурентоспособных станков с ЧПУ, а приобретение западного оборудования многим предприятиям не по средствам.

Между тем, общеизвестен факт, что развитие числового программного управления напрямую связано с продвижением и процветанием промышленности. Ситуация складывается таким образом, что, наследие советской эпохи износилось и устарело, а представители нового поколения не всем доступны по цене. Установка системы ЧПУ на станок - это одно из направлений модернизации оборудования, предлагаемое в Коломне нашим предприятием, ООО КБ-МПО, основанном на базе Коломенского Завода Тяжёлого Станкостроения (см. " ").

Установка системы ЧПУ на станок предполагает оснащение обычного металлорежущего станка современным числовым программным управлением. Стандартная комплектация данного вида оборудования предусматривает стойку управления и шаговые двигатели с приводами. Стойка управления представляет собой компьютерный блок с программным обеспечением CNC. По желанию клиента, станки могут оснащаться двух- или трехкоординатными системами.

Установка ЧПУ с двухкоординатной системой применяется для станков, рассчитанных на автоматическую обработку деталей вращения. Трехкоординатные системы ЧПУ позволяют получать сложные несимметричные изделия, выполняя, в том числе и фрезеровальные операции, как на цилиндрической, так и на произвольной поверхности.

1. Установка инструмента:

*перед установкой инструмента необходимо тщательно протереть инструмент и гнезда револьверной головки ветошью;

*в неиспользуемые гнезда для осевого инструмента установить заглушки, а также установить заглушки в неиспользуемые резьбовые отверстия;

*законтрить в держателях осевого инструмента винты зажима инструмента;

*при установке (замене) пластин очистить посадочные места и элементы крепления от стружки;

*при установке кулачков необходимо очистить зубчатую поверхность реек патрона и кулачков кисточкой или зубной щеткой;

*чтобы затянуть винты кулачков, в режиме MDI задайте команду М19 -ориентация шпинделя: привод не даст вращаться патрону и кулачки можно надежно затянуть;

*при закреплении инструмента пользоваться исправными ключами и не применять приспособления, усиливающие зажим.

2. Привязка инструмента:

Привязка инструмента является одной из наиболее ответственных работ, выполняемых наладчиком станка. От правильного понимания теории и аккуратного безошибочного выполнения процесса привязки зависит безаварийная работа станка.

Привязка инструмента заключается в определении и занесении в таблицу корректоров (MENU OFFSET) вылетов инструментов по осям X и Z.

В настоящее время практически все токарные станки оснащаются датчиками (Tool setter) фирмы Renishaw. У станков, не имеющих датчика, привязка осуществляется в традиционным методом - протачиванием заготовки по диаметру и подрезкой торца. Привязка с помощью датчика достаточно полно описана в «Руководстве по программированию для станков с Fanuc» Н-2000-6030-0В-А, методика привязки протачиванием - в «Руководстве оператора Fanuc серия 0i-TB» В-63834. Поэтому далее будут изложены принципы определения вылетов инструмента, т.к. в зависимости от этого производится как калибровка датчика, так и привязка инструмента методом протачивания заготовки.

В качестве начала координат для измерения вылетов инструмента предлагается использовать:

По оси Х - центр отверстия держателя осевого инструмента.

По оси Z - торец револьверной головки. Для станков с державками VDI по DIN 69880 - торец резцовой державки типа «В», например В3-30х20.

Внимание: направление осей вылета инструмента никак не связано с осями координат станка.

Хин и Zин - вылеты инструмента соответственно по осям X и Z, которые заносятся в таблицу корректоров.

Такой принцип отсчета вылетов инструмента обусловлен следующими соображениями:

1. Центр отверстия держателя осевого инструмента в токарных станках ВСЕГДА находится на оси вращения детали, поэтому корректор по Х для сверл, метчиков и другого аналогичного осевого инструмента ВСЕГДА равен 0. Кроме того, для расточных резцов в каталогах инструмента, выполненного по стандарту ISO, указывается расстояние от центра круглой державки до вершины режущей пластины, поэтому эту величину (удвоенную) по Х можно сразу ввести в таблицу корректоров.

2. В обычной револьверной головке крепление наружных резцов, выполненных по стандарту ISO, осуществляется клином и боковая поверхность державки практически заподлицо с торцом револьверной головки. В каталогах инструмента указывается расстояние от боковой поверхности державки до вершины режущей пластины, таким образом, величину вылета по Z также можно сразу внести в таблицу корректоров.

3. Ориентировочные вылеты осевого инструмента по Z удобно измерять штангенциркулем - «колумбусом».

4. Занесение предварительно измеренных или определенных из каталогов значений вылетов в таблицу корректоров при наличии датчика (Tool setter) привязки инструмента позволяет пользоваться программой автоматической привязки, что существенно сокращает время наладки станка.

Таким образом, глядя на величину и знак корректоров по Х и Z в таблице корректоров, легко определить тип инструмента, визуально проверить правильность установки инструмента в соответствующие позиции. При этом естественно подразумевается, что номер корректора равен номеру инструмента. ПРИМЕЧАНИЕ: При привязке инструмента методом протачивания корректор должен быть включен, т.е. для инструмента, установленного в гнезде 1 - Т0101.

3. Определение нуля детали;

Необходимо заметить, что нуль детали и корректора на инструмент формально никак не связаны. Определение нуля детали производится ПОСЛЕ привязки инструмента. Поверхность, выбранная в качестве плоскости нуля детали должна быть физической, чтобы ее можно было коснуться инструментом, обычно это торец детали.

Существует два способа определения нуля детали:

1. С помощью функции G50, при этом нуль детали при выключении станка системой ЧПУ не запоминается.

2. С помощью функций G54 - G59, при этом способе нуль детали сохраняется в памяти системы ЧПУ.

4. Ввод и вывод управляющих программ;

Ввод и вывод УП не представляет каких-либо трудностей и осуществляется в режиме EDITс помощью последовательного нажатия программных клавиш READ (ввод) или PUNCH (вывод) и программной клавиши EXEC (выполнить). К разъему RS232 станка должен быть подключен специальный кабель (обязательно при выключенном питании), соединяющий станок с устройством ввода - вывода. Таким устройством может быть персональный компьютер, имеющий специальную программу приема - передачи управляющих программ, специальный DNC - терминал или другое подобное средство. При выполнении ввода - вывода ключ защиты программ должен быть выключен.

5. Графический контроль управляющих программ;

Эта процедура применяется в случаях, если программа вводилась вручную с пульта системы ЧПУ, в рабочую программу вводилось большое количество изменений, т.е. во всех случаях, когда происходило РУЧНОЕ изменение программы. При этом часто не дожимаются или не нажимаются клавиши буквенно-цифровой информации, клавиши редактирования. И это соответственно приводит к неправильной работе станка, поломки его и инструмента. Необходимо иметь ввиду, что режим графического контроля отображает только траекторию движения БЕЗ УЧЕТА коррекции на инструмент. Режим графического контроля включается кнопкой AUX GRAPH.

Необходимо в окне графических параметров ввести диаметр и длину детали в ДИСКРЕТАХ, например Ш 40 соответствует 40000. Система ЧПУ сама установит масштаб отображения. ЧПУ последних моделей (Fanuc 0i-TD) имеет программные клавиши, позволяющие запускать режим контроля и видеть на экране процесс обработки, но при этом не происходит вращения шпинделя, смены инструмента, движения суппорта. Переключатель режимов при этом необходимо установить в положение AUTO и нажать на кнопку START. На предыдущих моделях систем таких клавиш не было и для запуска режима графического контроля необходимо нажать клавишу MACHINE LOCK, включить режим AUTOи нажать кнопку START. Дополнительно можно нажать кнопку AUX LOCK - функции M, S, T выполняться не будут.

ВНИМАНИЕ! Не забудьте после работы в режиме MACHINE LOCK обязательно выйти в нуль станка в режиме HOME. Если этого не сделать, то, вследствие изменения системы отсчета, при запуске станка в автоматическом режиме может возникнуть аварийная ситуация (поломка станка и инструмента).

6.Особенности работы в автоматическом режиме.

Отработку новой управляющей программы необходимо производить в покадровом режиме (SINGLE BLOCK)на скорости быстрых перемещений F0. При непрерывном выполнении программы нужно прислушаться к звукам резания и держать руку на кнопке FEED HOLD, чтобы при малейшем нарушении процесса обработки успеть ее нажать и не допустить поломки инструмента. Если произошло нарушение процесса и была нажата кнопка FEED HOLD, то далее должна быть нажата кнопка RESET. В памяти системы ЧПУ хранится следующий для исполнения кадр управляющей программы и если не нажать кнопку RESET, перейти в режим MDI или AUTO и выполнять какую-либо команду, сначала будет выполнена команда, хранящаяся в памяти и движение рабочих органов станка не будет соответствовать ожидаемым.

Начать выполнение управляющей программы можно с любого кадра. Поскольку размер управляющих программ для токарных станков невелик, в большинстве систем ЧПУ отсутствует функция рестарта программы. Запуск программы необходимо производить с начала инструментального блока - точки смены инструмента.

Для этого необходимо перейти в режим EDIT, найти нужный кадр и установить на нем курсор, перейти в режим AUTO и нажать кнопку START.

Программа начнет выполняться с выбранного кадра.