Утилизация тепла дымовых газов. Система глубокой утилизации с конденсационным теплообменником

Использование теплоты уходящих газов в промышленных котельных работающих на газу

Использование теплоты уходящих газов в промышленных котельных работающих на газу

к.т.н Сизов В.П., д.т.н Южаков А.А., к.т.н Капгер И.В.,
ООО "Пермавтоматика",
sizovperm@mail.ru

Аннотация: цена на природный газ во всём мире значительно различается. Это зависит от членства страны в ВТО, экспортирует или импортирует свой газ страна, затраты на добычу газа, состоянием промышленности, политическими решениями и пр. Цена на газ в РФ в связи вступлением нашей страны в ВТО будет только расти и в планах правительства уравнять цены на природный газ как в нутрии страны так и за её пределами. Приблизительно сравним цены на газ в Европе и России.

Россия – 3 руб/м 3 .

Германия - 25 руб/м 3 .

Дания – 42 руб/м 3 .

Украина, Белорусия – 10 руб/м 3 .

Цены достаточно условные. В Европейских странах массово используются котлы конденсационного типа, общая доля их в процессе выработки тепла достигает 90%. В России данные котлы в основном не используются в связи с дороговизной котлов, низкой стоимости газа и высокотемпературными централизованными сетями. А также сохранением системы лимитирования сжигания газа на котельных.

В настоящее время вопрос о более полном использовании энергии теплоносителей становится все более актуален. Выброс тепла в атмосферу не только создает дополнительное давление на окружающую среду, но и увеличивает затраты владельцев котельных. В тоже время современные технологии позволяют более полно использовать теплоту уходящих газов и увеличить КПД котла, рассчитанного по низшей теплоте сгорания, вплоть до значения в 111 %. Потеря теплоты с уходящими газами занимает основное место среди тепловых потерь котла и составляет 5¸12 % вырабатываемой теплоты . Дополнительно к этому может быть использована теплота конденсации водяных паров, которые образуются при сжигании топлива. Количество выделяемой теплоты при конденсации водяных паров зависит от вида топлива и находится в пределах от 3,8% для жидких топлив и до 11,2 % для газообразных (у метана) и определяется как разность между высшей и низшей теплотой сгорания топлива (табл. 1).

Таблица 1 - Величины высшей и низшей теплоты сгорания для различных видов топлива

Тип топлива

PCS (Ккал)

PCI (Ккал)

Разница (%)

Печное топливо

Получается, что в уходящих газах содержится как явная теплота, так и скрытая. Причем последняя может достигать величины, превосходящей в некоторых случаях явную теплоту. Явная теплота - это теплота, при которой изменение количества тепла, подведенного к телу, вызывает изменение его температуры. Скрытая теплота - теплота парообразования (конденсации), которая не изменяет температуру тела, а служит для изменения агрегатного состояния тела. Данное утверждение иллюстрируется графиком (рис. 1, на котором по оси абсцисс отложена энтальпия (количество подведенного тепла), а по оси ординат - температура).

Рис. 1 – Зависимость изменения энтальпии для воды

На участке графика А-В происходит нагрев воды от температуры 0 °С до температуры 100 °С. При этом все тепло, подведенное к воде, используется для повышения ее температуры. Тогда изменение энтальпии определяется по формуле (1)

(1)

где с – теплоемкость воды, m – масса нагреваемой, Dt – перепад температуры.

Участок графика В-С демонстрирует процесс кипения воды. При этом все тепло, подведенное к воде, расходуется на преобразование ее в пар, температура при этом остается постоянной - 100 °С. Участок графика C-D показывает, что вся вода превратилась в пар (выкипела), после этого тепло расходуется на повышение температуры пара. Тогда изменение энтальпии для участка А-С характеризуется формулой (2)

где r = 2500 кДж/кг – скрытая теплота парообразования воды при атмосферном давлении.

Самая большая разница между высшей и низшей теплотой сгорания, как видно из табл. 1, у метана, поэтому природный газ (до 99% метана) дает самую большую рентабельность. Отсюда все дальнейшие выкладки и выводы будут даны для газа на основе метана. Рассмотрим реакцию горения метана (3)

Из уравнения этой реакции следует, что для окисления одной молекулы метана необходимо две молекулы кислорода, т.е. для полного сжигания 1м 3 метана необходимо 2м 3 кислорода. В качестве окислителя при сжигании топлива в котельных агрегатах используется атмосферный воздух, который представляет смесь газов. Для технических расчетов обычно принимают условный состав воздуха из двух компонентов : кислорода (21 об. %) и азота (79 об. %). С учетом такова состава воздуха для проведения реакции горения для полного сжигания газа потребуется воздуха по объему в 100/21=4,76 раза больше, чем кислорода. Таким образом, для сжигания 1м 3 метана потребуется 2×4,76=9,52 воздуха. Как видно из уравнения реакции окисления, в результате получается углекислый газ, водяной пар (дымовые газы) и тепло. Теплота, которая выделяется при сгорании топлива согласно (3), называется низшей теплотой сгорания топлива (PCI).

Если охлаждать водяные пары, то при определенных условиях они начнут конденсироваться (переходить из газообразного состояния в жидкое) и при этом будет выделяться дополнительное количество теплоты (скрытая теплота парообразования/конденсации) рис. 2.

Рис. 2 – Выделение теплоты при конденсации водяного пара

Следует иметь ввиду, что водяные пары в дымовых газах имеют несколько другие свойства, чем чистый водяной пар. Они находятся в смеси c другими газами и их параметры отвечают параметрам смеси. Поэтому температура, при которой начинается конденсация, отличается от 100 °С. Значение этой температуры зависит от состава дымовых газов, что, в свою очередь, является следствием вида и состава топлива, а также коэффициента избытка воздуха.
Температура дымовых газов, при которой начинается конденсация водяных паров в продуктах сгорания топлива, называется точкой росы и имеет вид рис.3.


Рис. 3 – Точка росы для метана

Следовательно, для дымовых газов представляющих собой смесь газов и водяного пара, энтальпия меняется несколько по другому закону (рис. 4).

Рисунок 4 – Выделение теплоты из паровоздушной смеси

Из графика на рис. 4 можно сделать два важных вывода. Первое – температура точки росы равна температуре до которой охладили дымовые газы. Второе – не обязательно проходить, как на рис. 2, всю зону конденсации, что не только практически невозможно но и не нужно. Это, в свою очередь, обеспечивает различные возможности реализации теплового баланса. Другими словами, для охлаждения дымовых газов можно использовать практически любой небольшой объем теплоносителя.

Из вышесказанного можно сделать вывод, что при расчете КПД котла по низшей теплоте сгорания с последующей утилизацией теплоты уходящих газов и водяных паров можно значительно увеличить КПД (более 100%). На первый взгляд это противоречит законам физики, но на самом деле никакого противоречия здесь нет. КПД таких систем нужно рассчитывать по высшей теплоте сгорания, а определение КПД по низшей теплоте сгорания необходимо проводить только в том случае, если необходимо сравнить его КПД с КДП обычного котла. Только в этом контексте имеет смысл КПД > 100%. Считаем, что для таких установок более правильно приводить два КПД. Постановка задачи может быть сформулирована следующим образом. Для более полного использования теплоты сгорания уходящих газов их необходимо охладить до температуры ниже точки росы. При этом водяные пары, образующиеся при сжигании газа, сконденсируются и передадут теплоносителю скрытую теплоту парообразования. При этом охлаждение дымовых газов должно осуществляется в теплообменниках специальной конструкции, зависящей в основном от температуры уходящих газов и температуры охлаждающей воды. Применение воды в качестве промежуточного теплоносителя является наиболее привлекательным, т.к в этом случае возможно использовать воду с максимально низкой температурой. В результате возможно получить температуру воды на выходе из теплообменника, например, 54°С с последующим ее использованием. В случае использования в качестве теплоносителя обратной линии, ее температура должна быть как можно ниже, а это зачастую возможно только при наличии низкотемпературных систем отопления в качестве потребителей.

Дымовые газы котельных агрегатов большой мощности, как правило, отводятся в железобетонную или кирпичную трубу. Если не принять специальных мер по последующему нагреву частично осушенных дымовых газов, то труба превратится в конденсационный теплообменник со всеми вытекающими последствиями . Для решения этого вопроса существуют два пути. Первый путь заключается в применении байпаса, в котором часть газов, например 80%, пропускается через теплообменник, а другая часть, в размере 20%, пропускается по байпасу и затем смешивается с частично осушенными газами. Тем самым, нагревая газы, мы сдвигаем точку росы до необходимой температуры при которой труба гарантированно будет работать в сухом режиме. Второй способ заключается в применении пластинчатого рекуператора . При этом уходящие газы несколько раз проходят рекуператор, тем самым нагревая сами себя.

Рассмотрим пример расчета 150 м типовой трубы (рис. 5-7), имеющей трехслойную конструкцию. Расчеты выполнены в программном пакете Ansys-CFX. Из рисунков видно, что движение газа в трубе имеет ярко выраженный турбулентный характер и как следствие, минимальная температура на футеровке может быть не в районе оголовка, как следует из упрощенной эмпирической методики .

Рис. 7 – температурное поле на поверхности футеровки

Следует отметить, что при установке теплообменника в газовый тракт возрастет его аэродинамическое сопротивление, но снижается объем и температура уходящих газов. Это приводит к уменьшению тока дымососа. Образование конденсата накладывает специальные требования на элементы газового тракта в плане применения корозионно-стойких материалов. Количество конденсата приблизительно равно 1000-600 кг/час на 1 Гкал полезной мощности теплообменника . Значение рН конденсата продуктов сгорания при сжигании природного газа составляет 4.5-4.7, что соответствует кислой среде. В случае небольшого количества конденсата, возможно использовать для нейтрализации конденсата сменные блоки. Однако для крупных котельных необходимо применять технологию дозирования каустической соды . Как показывает практика небольшие объемы конденсата можно использовать в качестве подпитки без всякой нейтрализации.

Следует подчеркнуть, что основной проблемой при проектировании отмеченных выше систем является слишком большая разница энтальпии на единицу объёма веществ, и вытекающая из этого техническая задача - развитие поверхности теплообмена со стороны газа. Промышленность РФ серийно выпускает подобные теплообменники типа КСК, ВНВ и пр. . Рассмотрим на сколько развита поверхность теплообмена со стороны газа на действующей конструкции (рис.8). Обыкновенная трубка, внутри которой протекает вода (жидкость), а с наружи по рёбрам радиатора обтекает воздух (отходящие газы). Рассчитанное соотношение калорифера будет выражаться неким

Рис. 8 – чертёж трубки калорифера.

коэффициентом

K=S нар /S вн, (4),

где S нар – наружная площадь теплообменника мм 2 , а S вн – внутренняя площадь трубки.

При геометрических расчётах конструкции получаем K=15. Это значит что внешняя площадь трубки в 15 раз больше внутренней площади. Это объясняется тем, что энтальпия воздуха на единицу объёма во много раз меньше энтальпии воды, на единицу объёма. Рассчитаем во сколько раз энтальпия литра воздуха меньше энтальпии литра воды. Из

энтальпия воды: Е в = 4,183 КДж/л*К.

энтальпия воздуха: Е воз = 0,7864 Дж/л*К. (при температуре 130 0 С).

Отсюда энтальпия воды в 5319 раз больше, чем энтальпия воздуха, и поэтому K=S нар /S вн . В идеальном случае в таком теплообменнике коэффициент К должен быть 5319, но так как внешняя поверхность по отношению к внутренней развита в 15 раз, то разность в энтальпии по сути между воздухом и водой уменьшается до значения K= (5319/15)= 354. Технически развить соотношение площадей внутренней и внешней поверхности до получения соотношения K=5319 очень трудно или практически невозможно . Для решения этой проблемы попытаемся искусственно увеличить энтальпию воздуха (отходящих газов). Для этого распылим из форсунки в отходящий газ воду (конденсат этого же газа). Распылим его такое количество по отношению к газу, что вся распыленная вода полностью испарится в газе и относительная влажность газа станет 100%. Относительную влажность газа возможно рассчитать основываясь на табл.2.

Таблица 2. Значения абсолютной влажности газа с относительной влажностью по воде 100% при различных температурах и атмосферном давлении.

Т,°С

А,г/м3

Т,°С

А,г/м3

Т,°С

А,г/м3

86,74

Из рис.3 видно, что при очень качественной горелке, возможно добиться температуры точки росы в отходящих газах Т рос = 60 0 С. При этом температура этих газов составляет 130 0 С. Абсолютное содержание влаги в газе (согласно табл. 2) при Т рос = 60 0 С составит 129,70 гр/м 3 . Если в этом газе распылить воду, то температура его резко упадёт, плотность вырастет, а энтальпия резко повысится. Следует отметить, что распылять воду выше относительной влажности 100% не имеет смысла, т.к. при превышении порога относительной влажности свыше 100% распыляемая вода перестанет испаряться в газ. Проведем небольшой расчет требуемого количества распыляемой воды для следующих условий: Т гн – температура газа начальная равная 120 0 С, Т рос - точка росы газа 60 0 С (129,70 гр/м 3), требуется найти: Т гк - конечную температуру газа и М в - массу воды распылённую в газе (кг.)

Решение. Все расчёты проводим относительно 1 м 3 газа. Сложность расчётов определяется тем, что в результате распыления меняется как плотность газа, так и его теплоёмкость, объём и пр. Кроме того считается что испарение происходит в абсолютно сухом газе, а также не учитывается энергия на нагрев воды.

Рассчитаем количество энергии отданное газом воде при испарении воды

где: с –теплоёмкость газа (1 КДж/кг.К), m –масса газа (1 кг/м 3)

Рассчитаем количество энергии отданное водой при испарении в газ

где: r – скрытая энергия парообразования (2500 КДж/кг), m – масса испаряемой воды

В итоге подстановки получаем функцию

(5)

При этом нужно учитывать, что невозможно распылить воды более, чем указано в табл.2, а в газе уже имеется испарённая вода. Путем подбора и расчётов нами было получено значение m = 22 гр, Т гк = 65 0 С. Посчитаем фактическую энтальпию полученного газа, с учётом, что его относительная влажность 100% и при его охлаждении будет выделяться как скрытая, так и явная энергия. Тогда согласно получим сумму двух энтальпий. Энтальпию газа и энтальпию сконденсировавшейся воды.

Е воз =Ег+Евод

Ег находим из справочной литературы 1,1 (КДж/м 3 *К)

Евод рассчитываем относительно табл. 2. У нас газ остывая с 65 0 С до64 0 С выделяет 6,58 гр воды. Энтальпия конденсации составляет Евод=2500 Дж/гр или в нашем случае Евод=16.45 КДж/м 3

Суммируем энтальпию сконденсировавшейся воды и энтальпию газа.

Е воз =17,55 (Дж/л*К)

Как мы видно путём распыления воды, нам удалось увеличить энтальпию газа в 22,3 раза. Если до распыления воды энтальпия газа составляла Е воз = 0,7864 Дж/л*К. (при температуре 130 0 С). То после распыления энтальпия составляет Е воз =17,55 (Дж/л*К). А это означает, что для получения той же тепловой энергии на том же стандартном теплообменнике типа КСК, ВНВ площадь теплообменника возможно снизить в 22,3 раза. Пересчитанный коэффициент К (величина была равна 5319) становится равным 16. А при таком коэффициенте теплообменник приобретает вполне реализуемые размеры.

Еще одним важным вопросом при создании подобных систем является анализ процесса распыления, т.е. какого диаметра необходима капля при испарении воды в газе. Если достаточно мелкая капля (например, 5 мкМ), то срок жизни этой капли в газе до полного испарения достаточно короткий. А если капля имеет размер, например, 600 мкМ, то естественно в газе до полного испарения она находится намного дольше. Решение данной физической задачи достаточно осложнено тем, что процесс испарения происходит с постоянно меняющимися характеристиками: температуры, влажности, диаметра капли и пр. Для указанного процесса решение представлено в , а формула для расчёта времени полного испарения () капли имеет вид

(6)

где: ρ ж - плотность жидкости (1 кг/дм 3), r – энергия парообразования (2500 кДж/кг), λ г - теплопроводность газа (0,026 Дж/м 2 К), d 2 – диаметр капли (м), Δt – средняя разница температуры между газом и водой (К).

Тогда согласно (6) время жизни капли диаметром 100 мкМ. (1*10 -4 м) составляет τ = 2*10 -3 часа или 1,8секунды, а время жизни капли диаметром 50 мкМ. (5*10 -5 м) равно τ = 5*10 -4 часа или 0,072секунды. Соответственно зная время жизни капли, скорость полёта её в пространстве, скорость потока газа и геометрические размеры газохода можно легко рассчитать оросительную систему для газохода.

Ниже рассмотрим реализацию конструкции системы с учетом полученных выше соотношений. Считается что, теплообменник отходящих газов должен работать в зависимости от уличной температуры, в противном случае происходит разрушение домовой трубы при образовании в ней конденсата. Однако возможно изготовить теплообменник работающий в независимости от уличной температуры и имеющий более качественный съём тепла отходящих газов, даже до отрицательных температур, при том что температура отходящих газов будет, например +10 0 С (точка росы этих газов составит 0 0 С). Это обеспечивается за счет того, что при теплообмене на контроллере происходит расчёт точки росы, энергии теплообмена и других параметров. Рассмотрим технологическую схему предложенной системы (рис. 9).



Согласно технологической схеме в теплообменнике установлены: регулируемые шиберы а-б-в-г; теплоутилизаторы д-е-ж; датчики температуры 1-2-3-4-5-6; оОроситель (насос Н, и группа форсунок); контроллер управления.

ОРассмотрим функционирование предложенной системы. Пусть от котла выходят отходящие газы. например, температурой 120 0 С и точкой росы 60 0 С (на схеме обозначено 120/60) Датчик температуры (1) измеряет температуру отходящих газов котла. Точка росы рассчитывается контроллером относительно стехиометрии горения газа. На пути газа появляется шибер (а). Это аварийный шибер. который закрывается в случае ремонта оборудования, неисправности, капремонта, ППР и пр. Таким образом, шибер (а) открыт полностью и напрямую пропускает отходящие газы котла в дымосос. При этой схеме теплоутилизация равно нулю, фактически восстанавливается схема удаления дымовых газов как и было прежде до установки теплоутилизатора. В рабочем сотоянии шибер (а) полностью закрыт и 100% газов попадают в теплоутилизатор.

В теплоутилизаторе газы попадают в рекуператор (д) где происходит их остывание, но в любом случае не ниже точки росы (60 0 С). Например, они остыли до 90 0 С. Влага в них не выделилась. Измерение температуры газа производится датчиком температуры 2. Температуру газов после рекуператора можно регулировать шибером (б). Регулирование это необходимо для повышения КПД теплообменника. Так как при конденсации влаги находящаяся в газах масса ее уменьшается в зависимости от того на сколько были охлаждены газы, то можно изъять из них до 2/11 от общей массы газов в виде воды. Откуда взялась эта цифра. Рассмотрим химическую формулу реакции окисления метана (3).

Для окисления 1м 3 метана необходимо 2м 3 кислорода. Но так как кислорода в воздухе содержится только 20%, то воздуха на окисление 1м 3 метана потребуется 10м 3 . После сжигания этой смеси мы получаем: 1м 3 углекислого газа, 2 м 3 водяных паров и 8м 3 азота и др газов. Мы можем изъять из отходящих газов путём конденсации чуть меньше 2/11 всех отходящих газов в виде воды. Для этого отходящий газ необходимо охладить до температуры улицы. С выделением соответствующей доли воды. В воздухе забираемом с улицы на горение так же содержится незначительная влага.

Выделившаяся вода удаляется в нижней части теплообменника. Соответственно если по пути котёл-рекуператор (д)-теплоутилизатор (е) проходит весь состав газов 11/11 частей, то по другой стороне рекуператора (д) может пройти только 9/11 частей отходящего газа. Остальные - до 2/11 частей газа в виде влаги может выпасть в теплоутилизаторе. А для минимизации аэродинамического сопротивления теплоутилизатора шибер (б) можно немного приоткрыть. При этом произойдёт разделение отходящих газов. Часть пройдёт через рекуператор (д), а часть через шибер (б). При полном открытии шибера (б) газы пройдут не охлаждаясь и показания датчиков температуры 1 и 2 совпадут.

На пути газов установлена оросительная установка с насосом Н и группой форсунок. Газы орошаются водой выделавшийся при конденсации. Форсунки, которые разбрызгивают влагу в газе, резко повышают его точку росы, охлаждают и адиабатически сжимают. В рассматриваемом примере температура газа резко падает до 62/62, и так как распылённая в газе вода полностью испаряется в газе, то точка росы и температура газа совпадает. Достигнув теплообменника (е) скрытая тепловая энергия выделяется на нём. Кроме того, скачком возрастает плотность газового потока и скачком падает его скорость. Все эти изменения значительно изменяют КПД теплообмена в лучшую сторону. Количество разбрызгиваемой воды определяется контроллером и связано с температурой и расходом газа. Температуру газа перед теплообменником контролирует датчик температуры 6.

Далее газы попадают на теплоутилизатор (е). В теплоутилизаторе газы остывают, например, до температуры 35 0 С. Соответственно точка росы для этих газов составит так же 35 0 С. Следующим теплоутилизатором на пути отходящих газов является теплоутилизатор (ж). Он служит для подогрева воздуха на горение. Температура подачи воздуха в такой теплоутилизатор может достигать -35 0 С. Эта температура зависит от минимальной наружной температуры воздуха в данном регионе. Так как часть водяных паров из уходящего газа изъята, то массовый поток отходящих газов почти совпадает по массовому потоку воздуха на горение. пусть в теплоутилизатор, например, залит тосол. Между теплоутилизаторами установлен шибер (в). Данный шибер работает так же в дискретном режиме. При потеплении на улице пропадает смысл отбора тепла в теплоутилизаторе (ж). Он прекращает свою работу и шибер (в) открывается полностью пропуская отходящие газы, минуя тепоутилизатор (ж).

Температура остывших газов определяется датчиком температуры (3). Далее эти газы направляются в рекуператор (д). Пройдя его, они нагреваются до некоторой температуры пропорциональной остыванию газов на другой стороне рекуператора. Шибер (г) нужен для регулирования работы теплообмена в рекуператоре, а степень его открытия зависит уличной температуры (от датчик 5). Соответственно, если очень холодно на улице, то шибер (г) полностью закрыт и газы нагреваются в рекуператоре для избежание точки росы в трубе. Если на улице жара, то шибер (г) открыт, как и шибер (б).

ВЫВОДЫ:

Повышение теплообмена в теплообменнике жидкость/газ происходит за счёт резкого скачка энтальпии газа. Но предложенное распыление воды должно происходить строго дозировано. Кроме того, дозирование воды в отходящие газы происходит с учётом наружной температуры.

Полученная методика расчёта позволяет избежать конденсации влаги в дымовой трубе и значительно повысить КПД котлоагрегата. Подобная методика может быть применена и для газовых турбин и для других конденсаторных устройств.

При предложенном способе не меняется конструкция котла, а только дорабатываются. Стоимость доработки составляет около 10% стоимости котла. Срок окупаемости при нынешних ценах на газ составляет около 4 месяцев.

Данный подход позволяет значительно снизить металоёмкость конструкции и соответственно её стоимость. Кроме того значительно падает аэродинамическое сопротивление теплообменника, уменьшается нагрузка на дымосос.

ЛИТЕРАТУРА:

1.Аронов И.З. Использование тепла уходящих газов газифицированных котельных. – М.: «Энергия», 1967. – 192 с.

2.Тадеуш Хоблер. Теплопередача и теплообменники. – Ленинград.: Государственное научное издание химической литературы, 1961. – 626 с.

Труды Инсторфа 11 (64)

УДК 622.73.002.5

Горфин О.С. Gorfin O.S.

Горфин Олег Семенович, к. т. н., проф. кафедры торфяных машин и оборудования Тверского государственного технического университета (ТвГТУ). Тверь, Академическая, 12. [email protected] Gorfin Oleg S., PhD, Professor of the Chair of Peat Machinery and Equipment of the Tver State Technical University. Tver, Academicheskaya, 12

Зюзин Б.Ф. Zyuzin B.F.

Зюзин Борис Федорович, д. т. н., проф., зав. кафедрой торфяных машин и оборудования ТвГТУ [email protected] Zyuzin Boris F., Dr. Sc., Professor, Head of the Chair of Peat Machinery and Equipment of the Tver State Technical University

Михайлов А.В. Mikhailov A.V.

Михайлов Александр Викторович, д. т. н., профессор кафедры машиностроения, Национальный минерально-сырьевой университет «Горный», Санкт-Петербург, Ленинский пр., д. 55, корп. 1, кв. 635. [email protected] Mikhailov Alexander V., Dr. Sc., Professor of the Chair of Machine Building of the National Mining University, St. Petersburg, Leninsky pr., 55, building 1, Apt. 635

УСТРОЙСТВО THE DEVICE FOR DEEP

ДЛЯ ГЛУБОКОЙ UTILIZATION OF HEAT

УТИЛИЗАЦИИ ТЕПЛА OF COMBUSTION GASES

ДЫМОВЫХ ГАЗОВ ПОВЕРХНОСТНОГО ТИПА OF SUPERFICIAL TYPE

Аннотация. В статье рассмотрена конструкция теплоутилизатора, в которой изменен способ передачи утилизированной тепловой энергии от теплоносителя среде, воспринимающей теплоту, позволяющая утилизировать теплоту парообразования влаги топлива при глубоком охлаждении дымовых газов и полностью ее использовать на нагрев охлаждающей воды, направляемой без дополнительной обработки на нужды паротурбинного цикла. Конструкция позволяет в процессе утилизации теплоты осуществлять очистку дымовых газов от серной и сернистой кислот, а очищенный конденсат использовать в качестве горячей воды. Abstract. The article describes the design of heat exchanger, in which new method is used for transmitting of recycled heat from the heat carrier to the heat receiver. The construction allows to utilize the heat of the vaporization of fuel moisture while the deep cooling of flue gases and to fully use it for heating the cooling water allocated without further processing to the needs of steam turbine cycle. The design allows purifying of waste flue gases from sulfur and sulphurous acid and using the purified condensate as hot water.

Ключевые слова: ТЭЦ; котельные установки; теплоутилизатор поверхностного типа; глубокое охлаждение дымовых газов; утилизация теплоты парообразования влаги топлива. Key words: Combined heat and power plant; boiler installations; heat utilizer of superficial type; deep cooling of combustion gases; utilization of warmth of steam formation of fuel moisture.

Труды Инсторфа 11 (64)

В котельных тепловых электростанций энергия парообразования влаги т оплива вместе с дымовыми газами выбрасывается в атмосферу.

В газифицированных котельных потери теплоты с уходящими дымовыми газами могут достигать 25%. В котельных, работающих на твердом топливе, потери теплоты еще выше.

На технологические нужды ТБЗ в котельных сжигается фрезерный торф влажностью до 50%. Это значит, что половину массы топлива составляет вода, которая при сгорании превращается в пар и потери энергии на парообразование влаги топлива достигают 50%.

Уменьшение потерь тепловой энергии - это не только вопрос экономии топлива, но и снижение вредных выбросов в атмосферу.

Сокращение потерь тепловой энергии возможно при использовании теплоутилизаторов различных конструкций.

Конденсационные теплоутилизаторы, в которых охлаждение дымовых газов осуществляется ниже точки росы, позволяют утилизировать скрытую теплоту конденсации водяных паров влаги топлива.

Наибольшее распространение получили контактные и поверхностные теплоутилизаторы. Контактные теплообменники широко распространяются в промышленности и энергетике в связи с простотой конструкции, малой металлоемкостью и высокой интенсивностью теплообмена (скрубберы, градирни). Но они имеют существенный недостаток: происходит загрязнение охлаждающей воды вследствие ее контакта с продуктами сгорания - дымовыми газами.

В этом отношении более привлекательны поверхностные теплоутилизаторы, не имеющие непосредственного контакта продуктов сгорания и охлаждающей жидкости, недостатком которых является сравнительно низкая температура ее нагрева, равная температуре мокрого термометра (50...60 °С).

Достоинства и недостатки существующих теплоутилизаторов широко освещены в специальной литературе .

Эффективность поверхностных теплоутилизаторов можно существенно повысить, изменив способ теплообмена между средой, отдающей теплоту и ее воспринимающей, как это сделано в предлагаемой конструкции теплоутилизатора .

Схема теплоутилизатора для глубокой утилизации тепла дымовых газов показана

на рисунке. Корпус 1 теплоутилизатора опирается на основание 2. В средней части корпуса установлен изолированный резервуар 3 в виде призмы, заполненный предварительно очищенной проточной водой. Вода поступает сверху через патрубок 4 и удаляется в нижней части корпуса 1 насосом 5 через шибер 6.

С двух торцевых сторон резервуара 3 расположены изолированные от средней части рубашки 7 и 8, полости которых через объем резервуара 3 соединены между собой рядами горизонтальных параллельных труб, образующих пучки труб 9, в которых газы перемещаются в одну сторону. Рубашка 7 разделена на секции: нижнюю и верхнюю одинарные 10 (высотой h) и остальные 11 - двойные (по высоте 2h); рубашка 8 имеет секции только двойные 11. Нижняя одинарная секция 10 рубашки 7 пучком труб 9 соединена с нижней частью двойной секции 11 рубашки 8. Далее верхняя часть этой двойной секции 11 рубашки 8 пучком труб 9 соединена с нижней частью следующей двойной секции 11 рубашки 7 и так далее. Последовательно верхняя часть секции одной рубашки соединена с нижней частью секции второй рубашки, а верхняя часть этой секции соединена пучком труб 9 с нижней частью следующей секции первой рубашки, образуя, таким образом, змеевик переменного сечения: пучки труб 9 периодически чередуются объемами секций рубашек. В нижней части змеевика расположен патрубок 12 - для подвода дымовых газов, в верхней части - патрубок 13 для выхода газов. Патрубки 12 и 13 соединены между собой байпасным газоходом 4, в котором установлен шибер 15, предназначенный для перераспределения части горячих дымовых газов в обход теплоутилизатора в дымовую трубу (на рисунке не показана).

Дымовые газы поступают в теплоутилизатор и разделяются на два потока: в нижнюю одинарную секцию 10 (высотой h) рубашки 7 поступает основная часть (около 80%) продуктов сгорания и по трубам пучка 9 направляется в змеевик теплоутилизатора. Остальная часть (около 20%) поступает в байпасный газоход 14. Перераспределение газов производится для повышения температуры остывших дымовых газов за теплоутилизатором до 60-70 °С с целью предотвращения возможной конденсации остатков паров влаги топлива в хвостовых участках системы.

Дымовые газы подводятся к теплоутилизатору снизу через патрубок 12, а удаляются в

Труды Инсторфа 11 (64)

Рисунок. Схема теплоутилизатора (вид А - соединение труб с рубашками) Figure. The scheme of the heatutilizer (a look A - connection of pipes with shirts)

верхней части установки - патрубок 13. Предварительно подготовленная холодная вода заполняет резервуар сверху через патрубок 4, а удаляется насосом 5 и шибером 6, расположенными в нижней части корпуса 1. Противоток воды и дымовых газов повышает эффективность теплообмена.

Перемещение дымовых газов через теплоутилизатор осуществляется технологическим дымососом котельной. Для преодоления дополнительного сопротивления, создаваемого теплоутилизатором, возможна установка более мощного дымососа. При этом следует иметь в виду, что дополнительное гидравлическое сопротивление частично преодолевается за счет уменьшения объема продуктов сгорания в связи с конденсацией водяного пара дымовых газов.

Конструкция теплообменника обеспечивает не только эффективную утилизацию теплоты парообразования влаги топлива, но и удаление образующегося конденсата из потока дымовых газов.

Объем секций рубашек 7 и 8 больше объема соединяющих их труб, поэтому скорость газов в них снижается.

Дымовые газы, поступающие в теплоутилизатор, имеют температуру 150-160 °С. Серная и сернистая кислоты конденсируются при температуре 130-140 °С, поэтому конденсация кислот происходит в начальной части змеевика. При снижении скорости газового потока в расширяющихся частях змеевика -секциях рубашки и увеличении плотности конденсата серной и сернистой кислот в жидком состоянии по сравнению с плотностью в газообразном состоянии, многократном изменении направления движения потока дымовых газов (инерционная сепарация) конденсат кислот выпадает в осадок и вымывается из газов частью конденсата водяных паров в конденсатосборник кислот 16, откуда при срабатывании затвора 17 удаляется в промышленную канализацию.

Большая часть конденсата - конденсат водяных паров выделяется при дальнейшем понижении температуры газов до 60-70 °С в верхней части змеевика и поступает в конденсатосборник влаги 18, откуда без дополнительной обработки может использоваться в качестве горячей воды.

Труды Инсторфа 11 (64)

Трубы змеевика необходимо изготавливать из антикоррозийного материала или с внутренним антикоррозийным покрытием. Для предотвращения коррозии все поверхности теплоутилизатора и соединительных трубопроводов следует гуммировать.

В данной конструкции теплоутилизатора дымовые газы, содержащие пары влаги топлива, перемещаются по трубам змеевика. Коэффициент теплоотдачи при этом составляет не более 10 000 Вт/(м2 °С), за счет чего резко повышается эффективность теплообмена. Трубы змеевика находятся непосредственно в объеме охлаждающей жидкости, поэтому теплообмен происходит постоянно контактным способом. Это позволяет осуществить глубокое охлаждение дымовых газов до температуры 40-45 °С, причем вся утилизированная теплота парообразования влаги топлива передается охлаждающей воде. Охлаждающая вода не контактирует с дымовыми газами, поэтому может без дополнительной обработки использоваться в паротурбинном цикле и потребителями горячей воды (в системе горячего водоснабжения, подогрев обратной сетевой воды, технологические нужды предприятий, в тепличных и парниковых хозяйствах и т. д.). В этом главное достоинство предлагаемой конструкции теплоутилизатора.

Преимуществом предлагаемого устройства является также то, что в теплоутилизаторе регулируется время передачи теплоты от среды горячих дымовых газов охлаждающей жидкости, а следовательно ее температуры, изменением расхода жидкости с помощью шибера.

Для проверки результатов использования теплоутилизатора произведены тепло-техниче-ские расчеты котельной установки паропроизводительностью котла 30 т пара/ч (температура 425 °С, давление 3,8 МПа). В топке сжигается 17,2 т/ч фрезерного торфа влажностью 50% .

В торфе влажностью 50% содержится 8,6 т/ч влаги, которая при сжигании торфа переходит в дымовые газы.

Расход сухого воздуха (дымовых газов)

Gfl. г. = а х L х G,^^ = 1,365 х 3,25 х 17 200 = 76 300 кГ д. г. / ч,

где L = 3,25 кГ сух. г /кГ торфа - теоретически необходимое количество воздуха для горения; а =1,365 - средний коэффициент подсоса воздуха.

1. Теплота утилизации дымовых газов Энтальпия дымовых газов

J = ссм х t + 2,5 d, ^ж/кГ. сух. газ,

где ссм - теплоемкость дымовых газов (теплоемкость смеси), ^ж/кГ °К, t - температура газов, °К, d- влагосодержание дымовых газов, Г. влаги/кГ. д. г.

Теплоемкость смеси

ссМ = сг + 0,001dcn,

где сг, сп - теплоемкость соответственно сухого газа (дымовых газов) и пара.

1.1. Дымовые газы на входе в теплоутилизатор температурой 150 - 160 °С, принимаем Ц. г. = 150 °С; сп = 1,93 - теплоемкость пара; сг = 1,017 - теплоемкость сухих дымовых газов при температуре 150 °С; d150, Г/кГ. сух. г - влагосодержание при 150 °С.

d150 = GM./Gfl. г. = 8600 /76 300 х 103 =

112,7 Г/кГ. сух. г,

где Gвл. = 8600 кГ/ч - масса влаги в топливе. ссм =1,017 + 0,001 х 112,7 х 1,93 = 1,2345 ^ж/кГ.

Энтальпия дымовых газов J150 = 1,2345 х 150 + 2,5 х 112,7 = 466,9 ^ж/кГ.

1.2. Дымовые газы на выходе из теплоутилизатора температурой 40 °С

ссм = 1,017 + 0,001 х 50 х 1,93 = 1,103 ^ж/кГ °С.

d40 =50 Г/кГ сух г.

J40 = 1,103 х 40 + 2,5 х 50 = 167,6 ^ж/кГ.

1.3. В теплоутилизаторе 20% газов проходят по байпасному газоходу, а 80% - через змеевик.

Масса газов, проходящая через змеевик и участвующая в теплообмене

GзМ = 0,8Gfl. г. = 0,8 х 76 300 = 61 040 кГ/ч.

1.4. Теплота утилизации

Отл = (J150 - J40) х ^м = (466,9 - 167,68) х

61 040 = 18,26 х 106, ^ж/ч.

Эта теплота затрачивается на нагрев охлаждающей воды

Qx™= W х св х (t2 - t4),

где W- расход воды, кГ/ч; св = 4,19 ^ж/кГ °С -теплоемкость воды; t 2, t4 - температура воды

Труды Инсторфа 11 (64)

соответственно на выходе и входе в теплоутилизатор; принимаем tx = 8 °С.

2. Расход охлаждающей воды, кГ/с

W=Qyra /(св х (t2 - 8) = (18,26 / 4,19) х 106 / (t2 - 8)/3600 = 4,36 х 106/ (t2 -8) х 3600.

Используя полученную зависимость, можно определить расход охлаждающей воды необходимой температуры, например:

^, °С 25 50 75

W, кГ/с 71,1 28,8 18,0

3. Расход конденсата G^^ составляет:

^онд = GBM(d150 - d40) = 61,0 х (112,7 - 50) =

4. Проверка возможности конденсации остатков влаги парообразования топлива в хвостовых элементах системы.

Среднее влагосодержание дымовых газов на выходе из теплоутилизатора

^р = (d150 х 0,2 Gд. г. + d40 х 0,8 Gд. г.) / GA г1 =

112,7 х 0,2 + 50 х 0,8 =62,5 Г/кГ сух. г.

По J-d-диаграмме этому влагосодержанию соответствует температура точки росы, равная tp. р. = 56 °С.

Фактическая температура дымовых газов на выходе из теплоутилизатора равна

tcjmKT = ti50 х 0,2 + t40 х 0,8 = 150 х 0,2 + 40 х 0,8 = 64 °С.

Так как фактическая температура дымовых газов за теплоутилизатором выше точки росы, конденсации паров влаги топлива в хвостовых элементах системы происходить не будет.

5. Коэффициент полезного действия

5.1. Коэффициент полезного действия утилизации теплоты парообразования влаги топлива.

Количество теплоты, подведенное к теплоутилизатору

Q^h = J150 х Gft г = 466,9 х 76 300 =

35,6 х 106, М Dж/ч.

КПДутл. Q = (18,26 /35,6) х 100 = 51,3%,

где 18,26 х 106, МDж /ч - теплота утилизации парообразования влаги топлива.

5.2. Коэффициент полезного действия утилизации влаги топлива

КПДутл. W = ^конд / W) х 100 = (3825 / 8600) х 100 = 44,5%.

Таким образом, предлагаемый теплоутилизатор и способ его работы обеспечивают глубокое охлаждение дымовых газов. За счет конденсации паров влаги топлива резко повышается эффективность теплообмена между дымовыми газами и охлаждающей жидкостью. При этом вся утилизированная скрытая теплота парообразования передается для нагрева охлаждающей жидкости, которая без дополнительной обработки может использоваться в паротурбинном цикле.

В процессе работы теплоутилизатора происходит очистка дымовых газов от серной и сернистой кислот, в связи с чем конденсат паров может использоваться для горячего теплоснабжения.

Расчеты показывают, что коэффициент полезного действия составляет:

При утилизации теплоты парообразования

влаги топлива - 51,3%

Влаги топлива - 44,5%.

Список литературы

1. Аронов, И.З. Контактный нагрев воды продуктами сгорания природного газа. - Л.: Недра, 1990. - 280 с.

2. Кудинов, А.А. Энергосбережение в теплоэнергетике и теплотехнологиях. - М.: Машиностроение, 2011. - 373 с.

3. Пат. 2555919 (RU).(51) МПК F22B 1|18 (20006.01). Теплоутилизатор для глубокой утилизации тепла дымовых газов поверхностного типа и способ его работы /

О.С. Горфин, Б.Ф. Зюзин // Открытия. Изобретения. - 2015. - № 19.

4. Горфин, О.С., Михайлов, А.В. Машины и оборудование по переработке торфа. Ч. 1. Производство торфяных брикетов. - Тверь: ТвГТУ 2013. - 250 с.

Evaluation of Efficiency of Deep recuperation of Power Plant Boilers’ Combustion Productions

E.G. Shadek, Candidate of Engineering, independent expert

Keywords: combustion products, heat recuperation, boiler plant equipment, energy efficiency

One of the methods to solve the problem of fuel economy and improvement of energy efficiency of boiler plants is development of technologies for deep heat recuperation of boiler exhaust gases. We offer a process scheme of a power plant with steam-turbine units (STU) that allows for deep recuperation of heat from boiler combustion products from STU condenser using cooler-condensate with minimum costs without the use of heat pump units.

Описание:

Одним из путей решения проблемы экономии топлива и повышения энергоэффективности котельных установок является разработка технологий глубокой утилизации теплоты уходящих газов из котлов.Предлагаем технологическую схему электростанции с паротурбинными установками (ПТУ), позволяющую с минимальными затратами, без применения теплонасосных установок, осуществить глубокую утилизацию тепла отходящих из котла продуктов сгорания благодаря наличию охладителя – конденсата из конденсатора ПТУ.

Е. Г. Шадек , канд. техн. наук, независимый эксперт

Одним из путей решения проблемы экономии топлива и повышения энергоэффективности котельных установок является разработка технологий глубокой утилизации теплоты уходящих газов из котлов. Предлагаем технологическую схему электростанции с паротурбинными установками (ПТУ), позволяющую с минимальными затратами, без применения теплонасосных установок, осуществить глубокую утилизацию тепла отходящих из котла продуктов сгорания благодаря наличию охладителя – конденсата из конденсатора ПТУ.

Глубокая утилизация тепла продуктов сгорания (ПС) обеспечивается при их охлаждении ниже температуры точки росы, равной для ПС природного газа 50–55 0 С. При этом происходят следующие явления:

  • конденсация водяных паров (до 19–20 % объема или 12–13 % веса продуктов сгорания),
  • утилизация физической теплоты ПС (40–45 % всего теплосодержания),
  • утилизация скрытой теплоты парообразования (соответственно 60–55 %) .

Ранее установлено, что экономия топлива при глубокой утилизации в сравнении с котлом с паспортным (максимальным) КПД 92 % составляет 10–13 %. Отношение количества утилизируемого тепла к тепловой мощности котла составляет порядка 0,10–0,12, а КПД котла в конденсационном режиме – 105 % по низшей теплотворной способности газа.

Кроме того, при глубокой утилизации в присутствии в ПС водяных паров эмиссия вредных выбросов сокращается на 20–40 % и более, что делает процесс экологически чистым.

Еще один эффект глубокой утилизации – улучшение условий и продолжительности службы газового тракта, т. к. конденсация локализуется в камере, где установлен утилизационный теплообменник, независимо от температуры наружного воздуха .

Глубокая утилизация для отопительных систем

В передовых западных странах глубокая утилизация для отопительных систем осуществляется применением водогрейных котлов конденсационного типа, оборудованных конденсационным экономайзером .

Низкая, как правило, температура обратной воды (30–40 0 С) при типичном температурном графике, например 70/40 0 С, в системах отопления этих стран позволяет обеспечить глубокую утилизацию тепла в конденсационном экономайзере, оснащенном узлом сбора, отвода и обработки конденсата (с последующим его использованием для подпитки котла). Такая схема обеспечивает конденсационный режим работы котла без искусственного хладоносителя, т. е. без применения теплонасосной установки.

Эффективность и рентабельность глубокой утилизации для отопительных котлов в доказательствах не нуждаются. Конденсационные котлы получили на Западе широкое применение: до 90 % всех выпускаемых котлов – конденсационные. Эксплуатируются такие котлы и в нашей стране, хотя их производство у нас отсутствует.

В России, в отличие от стран с теплым климатом, температура в обратной магистрали тепловых сетей, как правило, выше значения точки росы, и глубокая утилизация возможна только в четырехтрубных системах (встречающихся крайне редко) или при использовании тепловых насосов. Главная причина отставания России в разработках и внедрении глубокой утилизации – низкая цена природного газа, высокие капзатраты из-за включения в схему тепловых насосов и длительные сроки окупаемости .

Глубокая утилизация для котлов электростанций

Эффективность глубокой утилизации для котлов электростанций (рис. 1) значительно выше, чем для отопительных, в силу стабильной нагрузки (КИМ = 0,8–0,9) и больших единичных мощностей (десятки мегаватт).

Оценим ресурс тепла продуктов сгорания станционных котлов, учитывая их высокий КПД (90–94 %). Данный ресурс определяется количеством сбросного тепла (Гкал/ч или кВт), однозначно зависимым от тепловой мощности котла Q K , и температурой за газовыми котлами Т 1УХ, которую в России принимают не ниже 110–130 0 С по двум причинам:

  • для увеличения естественной тяги и снижения напора (расхода энергии) дымососа;
  • для исключения конденсации водяных паров в боровах, газоходах и дымовых трубах.

Расширенный анализ большого массива 1 опытных данных балансовых, пусконаладочных испытаний, проведенных специализированными организациями, режимных карт, отчетной статистики станций и т. п. и результаты расчетов значений потери тепла с уходящими продуктами сгорания q 2 , количествa утилизируемого тепла 2 Q УТ и производных от них показателей в широком диапазоне нагрузок станционных котлов приведены в табл. 1 3 . Цель – определение q 2 и соотношений величин Q K , q 2 и Q УТ в типовых условиях работы котлов (табл. 2). В нашем случае не имеет значения, какой котел: паровой или водогрейный, промышленный или отопительный.

Показатели табл. 1, выделенные голубым цветом, рассчитывали по алгоритму (см. справку). Расчет процесса глубокой утилизации (определение Q УТ и др.) проводили по инженерной методике, приведенной в и описанной в . Коэффициент теплопередачи «продукты сгорания – конденсат» в конденсационном теплообменнике определяли по эмпирической методике завода – изготовителя теплообменника (ОАО «Калориферный завод», Кострома).

Результаты свидетельствуют о высокой экономической эффективности технологии глубокой утилизации для станционных котлов и рентабельности предлагаемого проекта. Срок окупаемости систем – от 2 лет для котла минимальной мощности (табл. 2, котел № 1) до 3–4 мес. Полученные соотношения β, φ, σ, а также статьи экономии (табл. 1, строки 8–10, 13–18) позволяют сразу оценить возможности и конкретные показатели заданного процесса, котла.

Утилизация тепла в газовом подогревателе

Обычная технологическая схема электростанции предусматривает нагрев конденсата в газовом подогревателе (часть хвостовых поверхностей котла, экономайзера) на отходящих из котла дымовых газах.

После конденсатора насосами (иногда через блочную обессоливающую установку – далее БОУ) конденсат направляется в газовый подогреватель, после которого поступает в деаэратор. При нормативном качестве конденсата БОУ байпасируют. Для исключения конденсации водяных паров из уходящих газов на последних трубах газового подогревателя температура конденсата перед ним поддерживается не ниже 60 0 С посредством рециркуляции на вход в него подогретого конденсата.

Для дополнительного снижения температуры уходящих газов в линию рециркуляции конденсата нередко включают водоводяной теплообменник, охлаждаемый подпиточной водой теплосети. Подогрев сетевой воды осуществляется конденсатом из газового подогревателя. При дополнительном охлаждении газов на 10 0 С в каждом котле можно получить около 3,5 Гкал/ч теплофикационной нагрузки.

Для предотвращения кипения конденсата в газовом подогревателе за ним устанавливают регулирующие питательные клапаны. Основное их назначение – распределение расхода конденсата между котлами в соответствии с тепловой нагрузкой ПТУ .

Система глубокой утилизации с конденсационным теплообменником

Как можно видеть из технологической схемы (рис. 1), конденсат пара из конденсатосборника насосом 14 подается в сборный бак 21, а оттуда в распределительный коллектор 22. Здесь конденсат при помощи системы автоматического регулирования станции (см. ниже) разделяется на два потока: один подается в узел глубокой утилизации 4 , в конденсационный теплообменник 7, а второй – на подогреватель низкого давления (ПНД) 18, а затем в деаэратор 15. Температура конденсата пара из конденсатора турбины (около 20–35 0 С) позволяет охладить продукты сгорания в конденсационном теплообменнике 7 до требуемых 40 0 С, т. е. обеспечить глубокую утилизацию.

Нагретый конденсат пара из конденсационного теплообменника 7 подается через ПНД 18 (либо минуя 18) в деаэратор 15. Полученный в конденсационном теплообменнике 7 конденсат продуктов сгорания сливается в поддон и резервуар 10. Оттуда он подается в бак загрязненного конденсата 23 и перекачивается дренажным насосом 24 в бак запаса конденсата 25, из которого конденсатным насосом 26 через регулятор расхода подается на участок очистки конденсата продуктов сгорания (на рис. 1 не показан), где производят его обработку по известной технологии. Очищенный конденсат продуктов сгорания подают в ПНД 18 и далее в деаэратор 15 (либо сразу в 15). Из деаэратора 15 поток чистого конденсата подают питательным насосом 16 в подогреватель высокого давления 17, а из него в котел 1.

Таким образом, утилизируемое в конденсационном теплообменнике тепло продуктов сгорания экономит топливо, расходуемое в технологической схеме электростанции на подогрев станционного конденсата перед деаэратором и в самом деаэраторе.

Конденсационный теплообменник устанавливают в камере 35 на стыке котла 27 с газоходом (рис. 2в). Тепловую нагрузку конденсационного теплообменника регулируют байпасированием, т. е. отводом части горячих газов помимо конденсационного теплообменника через байпасный канал 37 дроссель-клапаном (шибером) 36.

Простейшей была бы традиционная схема: конденсационный экономайзер, точнее хвостовые секции экономайзера котла, типа газовый подогреватель, но работающие в конденсационном режиме, т. е. с охлаждением продуктов сгорания ниже температуры точки росы. Но при этом возникают трудности конструктивного и эксплуатационного плана (обслуживание и пр.), требующие специальных решений.

Применимы различные типы теплообменников: кожухотрубные, прямотрубные, с накатанными ребрами, пластинчатые или эффективная конструкция с новой формой теплообменной поверхности с малым радиусом гиба (регенератор РГ-10, НПЦ «Анод»). В данной схеме в качестве конденсационного теплообменника приняты теплообменные блоки-секции на базе биметаллического калорифера марки ВНВ123-412-50АТЗ (ОАО «Калориферный завод», Кострома).

Выбор компоновки секций и подключения по воде и газам позволяют варьировать и обеспечивать скорости воды и газов в рекомендуемых пределах (1–4 м/с) . Газоход, камера, газовый тракт выполняются из коррозионно-стойких материалов, покрытий, в частности нержавеющих сталей, пластиков – это общепринятая практика.

* Потери тепла с химической неполнотой сгорания отсутствуют.

Особенности глубокой утилизации с конденсационным теплообменником

Высокая эффективность технологии позволяет в широких пределах регулировать тепловую мощность системы, сохраняя ее рентабельность: степень байпасирования, температуру продуктов сгорания за конденсационным теплообменником и пр. Тепловую нагрузку конденсационного теплообменника QУТ и, соответственно, количество конденсата, подаваемое в него из коллектора 22 (рис. 1), определяют как оптимальную (а не обязательно максимальную) по технико-экономическим расчетам и конструктивным соображениям с учетом режимных параметров, возможностей и условий технологической схемы котла и станции в целом.

После контакта с продуктами сгорания природного газа конденсат сохраняет высокое качество и нуждается в простой и недорогой очистке – декарбонизации (и то не всегда) и дегазации. После обработки на участке химводоподготовки (не показан) конденсат насосом через регулятор расхода подается в конденсатную линию станции – на деаэратор, а после него в котел. Если конденсат не используется, его сливают в канализацию.

В узле сбора и обработки конденсата (рис. 1, поз. 8, 10, рис. 2, поз. 23–26) применяют известное штатное оборудование систем глубокой утилизации (см., например, ).

В установке вырабатывается большое количество избыточной воды (конденсата водяных паров от сгорания углеводородов и дутьевого воздуха), поэтому система не нуждается в подпитке.

Температура продуктов сгорания на выходе из конденсационного теплообменника Т 2УХ определяется условием конденсации водяных паров в уходящих продуктах сгорания (в диапазоне 40–45 0 С).

С целью исключения выпадения конденсата в газовом тракте и особенно в дымовой трубе предусматривается байпасирование, т. е. перепуск части продуктов сгорания по обводному каналу помимо узла глубокой утилизации так, чтобы температура смеси газов за ним была в пределах 70–90 0 С. Байпасирование ухудшает все показатели процесса. Оптимальный режим – работа с байпасированием в холодное время года, а летом, когда опасности конденсации и обледенения нет, – без него.

Температура уходящих газов котлов (обычно 110–130 0 С) позволяет нагревать конденсат в конденсационном теплообменнике перед деаэратором до требуемых 90–100 0 С. Таким образом, удовлетворяются требования технологии по температурам: и нагрева конденсата (порядка 90 0 С), и охлаждения продуктов сгорания (до 40 0 С) до конденсации.

Сравнение технологий утилизации тепла продуктов сгорания

Принимая решение по утилизации тепла продуктов сгорания котла, следует сравнивать эффективности предлагаемой системы глубокой утилизации и традиционной схемы с газовым подогревателем как ближайшего аналога и конкурента.

Для нашего примера (см. справку 1) мы получили при глубокой утилизации количество утилизируемого тепла Q УТ равным 976 кВт.

Принимаем температуру конденсата на входе в газовый подогреватель конденсата 60 0 С (см. выше), при этом температура продуктов сгорания на выходе из него как минимум 80 0 С. Тогда утилизируемое в газовом подогревателе тепло продуктов сгорания, т. е. экономия тепла, будет равна 289 кВт , что в 3,4 раза меньше, чем в системе глубокой утилизации. Таким образом, «цена вопроса» в нашем примере 687 кВт, или, в годовом исчислении, 594 490 м 3 газа (при КИМ = 0,85) стоимостью около 3 млн руб. Выигрыш будет расти с мощностью котла.

Достоинства технологии глубокой утилизации

В заключение можно сделать выводы, что, помимо энергосбережения, при глубокой утилизации продуктов сгорания котла электростанции достигаются следующие результаты:

  • снижение эмиссии токсичных окислов CO и NOx, обеспечение экологической чистоты процесса;
  • получение дополнительной, избыточной воды и исключение тем самым потребности в подпиточной воде котла;
  • конденсация водяных паров продуктов сгорания локализуется в одном месте – в конденсационном теплообменнике. Не считая незначительного брызгоуноса после каплеуловителя, исключается выпадение конденсата в последующем газовом тракте и связанные с этим разрушение газоходов от коррозионного воздействия влаги, образование наледи в тракте и особенно в дымовой трубе;
  • необязательным в ряде случаев становится применение водо-водяного теплообменника; отпадает необходимость в рециркуляции: подмешивании части горячих газов к охлажденным (или нагретого конденсата к холодному) в целях повышения температуры уходящих продуктов сгорания для предотвращения конденсации в газовом тракте и дымовой трубе (экономия энергии, средств).

Литература

  1. Шадек Е., Маршак Б., Анохин А., Горшков В. Глубокая утилизация тепла отходящих газов теплогенераторов // Промышленные и отопительные котельные и мини-ТЭЦ. 2014. № 2 (23).
  2. Шадек Е. Тригенерация как технология экономии энергоресурсов // Энергосбережение. 2015. № 2.
  3. Шадек Е., Маршак Б., Крыкин И., Горшков В. Конденсационный теплообменник-утилизатор – модернизация котельных установок // Промышленные и отопительные котельные и мини-ТЭЦ. 2014. № 3 (24).
  4. Кудинов А. Энергосбережение в теплогенерирующих установках. М. : Машиностроение, 2012.
  5. Равич М. Упрощенная методика теплотехнических расчётов. М. : Изд-во АН СССР, 1958.
  6. Березинец П., Ольховский Г. Перспективные технологии и энергоустановки для производства тепловой и электрической энергии. Раздел шестой. 6.2 газотурбинные и парогазовые установки. 6.2.2. Парогазовые установки. ОАО «ВТИ». «Современные природоохранные технологии в энергетике». Информационный сборник под ред. В. Я. Путилова. М. : Издательский дом МЭИ, 2007.

1 Первоисточник данных: обследования водогрейных котлов (11 шт. в трех котельных тепловых сетей), сбор и обработка материалов .

2 Методика расчета, в частности Q УТ, приведена в .

Система конденсации уходящих дымовых газов котлов компании Aprotech Engineering AB ” (Швеция)

Система конденсации уходящих дымовых газов позволяет получить и рекуперировать большое количество тепловой энергии, содержащейся во влажном уходящем дымовом газе котла, который обычно выбрасывается через дымовую трубу в атмосферу.

Система рекуперации тепла/конденсации уходящих дымовых газов позволяет увеличить на 6 - 35% (в зависимости от типа сжигаемого топлива и параметров установки) отпуск тепла потребителям или снизить потребления природного газа на 6-35%

Основные преимущества:

  • Экономия топлива (природный газ) - такая же или увеличенная тепловая нагрузка котла при меньшем объеме сжигания топлива
  • Снижение выбросов - CO2, NOx и SOx (при сжигании угля или жидкого топлива)
  • Получение конденсата для системы подпитки котла

Принцип работы:

Система рекуперации тепла/конденсации уходящих дымовых газов может работать в две ступени: с использованием или без использования системы увлажнения воздуха, подающегося на горелки котла. Если необходимо, то устанавливается скруббер перед системой конденсации.

В конденсаторе уходящие дымовые газы охлаждаютя с помощью воды обратки теплосети. При снижении температуры уходящих дымовых газов происходит конденсация большого количества водяных паров, содержащихся в уходящем газе. Тепловая энергия конденсации паров используется для нагрева обратки теплосети.

Дальнейшее охлаждение газа и конденсация водяных паров происходит в увлажнителе. Охлаждающей средой в увлажнителе является дутьевой воздух, подаваемый на горелки котла. Так как дутьевой воздух нагревается в увлажнителе, а теплый конденсат впрыскивается в поток воздуха перед горелками - таким образом происходит дополнительный испаренительный процесс в уходящем дымовом газе котла.

Дутьевой воздух, подаваемый на горелки котла содержит повышенное количество тепловой энергии ввиду повышенной температуры и влажности.

Это приводит к увеличению количества энергии в уходящем дымовом газе поступающем в конденсатор, что в свою очередь приводит к более эффективному использованию тепла системой централизованного теплоснабжения.

В установке конденсации уходящих дымовых газов также получают конденсат, который, в зависимости от состава уходящих дымовых газов, будет доочищен перед подачей его в систему котла.

Экономический эффект.

Сравнение тепловой мощности при условиях:

  1. Без конденсации
  2. Конденсация дымовых газов
  3. Конденсация вместе с увлажнением воздуха подаваемого для горени


Системаконденсации уходящих дымовых газов позволяет существующей котельной:

  • Увеличить выроботку тепла на 6,8% или
  • Уменьшить потребление газа на 6,8%, а так же увеличить доходы от продажи квот на СО,NO
  • Размер инвестиций около 1 млн. евро (для котельной мощностью 20 МВт)
  • Срок окупаемости 1-2 года.

Экономия в зависимости от температуры теплоносителя в обратном трубопроводе:

Тепло дымовых газов, уходящих из печей, кроме подогрева воздуха и газообразного топлива, может быть использовано в котлах-утилизаторах для выработки водяного пара. В то время как подогретые газ и воздух используются в самом печном агрегате, пар направляется внешним потребителям (для производственных и энергетических нужд).

Во всех случаях следует стремиться к наибольшей регенерации тепла, т. е. к возвращению его в рабочее пространство печи в виде тепла нагретых компонентов горения (газообразного топлива и воздуха). В самом деле, увеличение регенерации тепла ведет к сокращению расхода топлива и к интенсификации и улучшению технологического процесса. Однако наличие рекуператоров или регенераторов не всегда исключает возможность установки котлов-утилизаторов. В первую же очередь котлы-утилизаторы нашли применение в крупных печах с относительно высокой температурой отходящих дымовых газов: в мартеновских сталеплавильных печах, в медеплавильных отражательных печах, во вращающихся печах для обжига цементного клинкера, при сухом способе производства цемента и т. д.

Рис. 5.

1 - пароперегреватель; 2 - трубная поверхность; 3 - дымосос.

Тепло дымовых газов, отходящих от регенераторов мартеновских печей с температурой 500 -- 650 °С, используется в газотрубных котлах-утилизаторах с естественной циркуляцией рабочего тела. Поверхность нагрева газотрубных котлов состоит из дымогарных труб, внутри которых проходят дымовые газы со скоростью примерно 20 м/сек. Тепло от газов к поверхности нагрева передается путем конвекции, а потому увеличение скорости повышает теплопередачу. Газотрубные котлы просты в эксплуатации, при монтаже не требуют обмуровки и каркасов и обладают высокой газоплотностью.

На рис. 5 показан газотрубный котел Таганрогского завода средней производительности D ср = 5,2 т/ч с расчетом на пропуск дымовых газов до 40000 м 3 /ч. Давление пара, вырабатываемого котлом, равно 0,8 Мн/м 2 ; температура 250 °С. Температура газов до котла 600 °С, за котлом 200 - 250 °С.

В котлах с принудительной циркуляцией поверхность нагрева составляется из змеевиков, расположение которых не ограничивается условиями естественной циркуляции, и поэтому такие котлы компактны. Змеевиковые поверхности изготовляются из труб малого диаметра, например d = 32Ч3 мм, что облегчает вес котла. При многократной циркуляции, когда кратность циркуляции составляет 5 - 18, скорость воды в трубках значительна, не менее 1 м/сек, вследствие чего в змеевиках уменьшается выпадение из воды растворенных солей, а кристаллическая накипь смывается. Тем не менее котлы должны питаться водой, химически очищенной при помощи катионитовых фильтров и других способов водоподготовки, соответствующей нормам питательной воды для обычных паровых котлов.

Рис. 6.

1 - экономайзерная поверхность; 2 - испарительная поверхность; 3 - пароперегреватель; 4 - барабан-коллектор; 5 - циркуляционный насос; 6 - шламоуловитель; 7 -- дымосос.

На рис. 6 дана схема размещения змеевиковых поверхностей нагрева в вертикальных дымоходах. Движение пароводяной смеси осуществляется циркуляционным насосом. Конструкции котлов подобного типа разработаны Центроэнергочерметом и Гипромезом и изготовляются на расходы дымовых газов до 50 - 125 тыс. м 3 /ч со средней паропроизводительностью от 5 до 18 т/ч.

Стоимость пара составляет 0,4 - 0,5 руб/т вместо 1,2 - 2 руб/т у пара, отобранного из паровых турбин ТЭЦ и 2 - 3 руб/т у пара от промышленных котельных. Стоимость пара составляется из затрат на энергию для привода дымососов, расходов на приготовление воды, амортизацию, ремонт и обслуживание. Скорость газов в котле составляет от 5 до 10 м/сек, что обеспечивает хорошую теплопередачу. Аэродинамическое сопротивление газового тракта составляет 0,5 - 1,5 кн/м 2 , поэтому агрегат должен иметь искусственную тягу от дымососа. Усиление тяги, которым сопровождается установка котлов-утилизаторов, как правило, улучшает работу мартеновских печей. Подобные котлы получили распространение на заводах, но для их хорошей работы требуется защита поверхностей нагрева от заноса пылью и частицами шлака и систематическая очистка поверхностей нагрева от уноса посредством обдувки перегретым паром, промывки водой (при остановках котла), вибрационным путем и др.

Рис. 7.

Для использования тепла дымовых газов, отходящих от медеплавильных отражательных печей, устанавливаются водотрубные котлы с естественной циркуляцией (рис. 7). Дымовые газы в этом случае имеют очень высокую температуру (1100 - 1250 °С) и загрязнены пылью в количестве до 100 - 200 г/м 3 , причем часть пыли имеет высокие абразивные (истирающие) свойства, другая часть находится в размягченном состоянии и может шлаковать поверхность нагрева котла. Именно большая запыленность газов и заставляет пока отказываться от регенерации тепла в этих печах и ограничиваться использованием дымовых газов в котлах-утилизаторах.

Передача тепла от газов к экранным испарительным поверхностям протекает очень интенсивно, благодаря чему обеспечивается интенсивное парообразование частицы шлака, охлаждаясь, гранулируются и выпадают в шлаковую воронку, чем исключается шлакование конвективной поверхности нагрева котла. Установка подобных котлов для использования газов с относительно невысокой температурой (500 -- 700 °С) нецелесообразна из-за слабой теплопередачи лучеиспусканием.

В случае оборудования высокотемпературных печей металлическими рекуператорами котлы-утилизаторы целесообразно устанавливать непосредственно за рабочими камерами печей. В этом случае в котле температура дымовых газов понижается до 1000 - 1100 °С. С такой температурой они уже могут быть направлены в жароупорную секцию рекуператора. Если газы несут много пыли, то котел-утилизатор устраивается в виде экранного котла-шлакогранулятора, что обеспечивает сепарацию уноса из газов и облегчает работу рекуператора.