Индукционная печь чертеж. Что такое индукционная печь и как ее сделать своими руками? Индукционная печь для плавки металла

Индукционные нагреватели работают по принципу “получение тока из магнетизма”. В специальной катушке генерируется переменное магнитное поле высокой мощности, которое порождает вихревые электрические токи в замкнутом проводнике.

Замкнутым проводником в индукционных плитах является металлическая посуда, которая разогревается вихревыми электрическими токами. В общем, принцип работы таких приборов не сложен, и при наличии небольших познаний в физике и электрике, собрать индукционный нагреватель своими руками не составит большого труда.

Самостоятельно могут быть изготовлены следующие приборы:

  1. Приборы для нагрева в котле отопления.
  2. Мини-печи для плавки металлов.
  3. Плиты для приготовления пищи.

Индукционная плита своими руками, должна быть изготовлена с соблюдением всех норм и правил для эксплуатации данных приборов. Если за пределы корпуса в боковых направлениях будет выделяться опасное для человека электромагнитное излучение, то использовать такой прибор категорически запрещается.

Кроме этого большая сложность при конструировании плиты заключается в подборе материала для основания варочной поверхности, которое должно удовлетворять следующим требованиям:

  1. Идеально проводить электромагнитное излучение.
  2. Не являться токопроводящим материалом.
  3. Выдерживать высокую температурную нагрузку.

В бытовых варочных индукционных поверхностях используется дорогая керамика, при изготовлении в домашних условиях индукционной плиты, найти достойную альтернативу такому материалу – довольно сложно. Поэтому, для начала следует сконструировать что-нибудь попроще, например, индукционную печь для закалки металлов.

Инструкция по изготовлению

Чертежи


Рисунок 1. Электрическая схема индукционного нагревателя
Рисунок 2. Устройство. Рисунок 3. Схема простого индукционного нагревателя

Для изготовления печи понадобятся следующие материалы и инструменты:

  • припой;
  • текстолитовая плата.
  • мини-дрель.
  • радиоэлементы.
  • термопаста.
  • химические реагенты для травления платы.

Дополнительные материалы и их особенности:

  1. Для изготовления катушки , которая будет излучать необходимое для нагрева переменное магнитное поле, необходимо приготовить отрезок медной трубки диаметром 8 мм, и длиной 800 мм.
  2. Мощные силовые транзисторы являются самой дорогой частью самодельной индукционной установки. Для монтажа схемы частотного генератора необходимо приготовить 2 таких элемента. Для этих целей подойдут транзисторы марок: IRFP-150; IRFP-260; IRFP-460. При изготовлении схемы используются 2 одинаковых из перечисленных полевых транзисторов.
  3. Для изготовления колебательно контура понадобятся керамические конденсаторы ёмкостью 0,1 mF и рабочим напряжением 1600 В. Для того, чтобы в катушке образовался переменный ток высокой мощности, потребуется 7 таких конденсаторов.
  4. При работе такого индукционного прибора , полевые транзисторы будут сильно разогреваться и если к ним не будут присоединены радиаторы из алюминиевого сплава, то уже через несколько секунд работы на максимальной мощности, данные элементы выйдут из строя. Ставить транзисторы на теплоотводы следует через тонкий слой термопасты, иначе эффективность такого охлаждения будет минимальна.
  5. Диоды , которые используются в индукционном нагревателе, обязательно должны быть ультрабыстрого действия. Наиболее подходящими для данной схемы, диоды: MUR-460; UF-4007; HER – 307.
  6. Резисторы, которые используются в схеме 3: 10 кОм мощностью 0,25 Вт – 2 шт. и 440 Ом мощностью – 2 Вт. Стабилитроны: 2 шт. с рабочим напряжением 15 В. Мощность стабилитронов должна составлять не менее 2 Вт. Дроссель для подсоединения к силовым выводам катушки используется с индукцией.
  7. Для питания всего устройства понадобится блок питания мощностью до 500. Вт. и напряжением 12 – 40 В. Запитать данное устройство можно от автомобильного аккумулятора, но получить наивысшие показания мощности при таком напряжении не получится.


Сам процесс изготовления электронного генератора и катушки занимает немного времени и осуществляется в такой последовательности:

  1. Из медной трубы делается спираль диаметром 4 см. Для изготовления спирали следует медную трубку накрутить на стержень с ровной поверхностью диаметром 4 см. Спираль должна иметь 7 витков, которые не должны соприкасаться. На 2 конца трубки припаиваются крепёжные кольца для подключения к радиаторам транзистора.
  2. Печатная плата изготавливается по схеме. Если есть возможность поставить полипропиленовые конденсаторы, то благодаря тому, что такие элементы обладают минимальными потерями и устойчивой работой при больших амплитудах колебания напряжений, устройство будет работать намного стабильнее. Конденсаторы в схеме устанавливаются параллельно образуя с медной катушкой колебательный контур.
  3. Нагрев металла происходит внутри катушки, после того как схема будет подключена к блоку питания или аккумулятору. При нагреве металла необходимо следить за тем, чтобы не было короткого замыкания обмоток пружины. Если коснуться нагреваемым металлом 2 витка катушки одновременно, то транзисторы выходят из строя моментально.

Нюансы


  1. При проведении опытов по нагреву и закалке металлов , внутри индукционной спирали температура может быть значительна и составляет 100 градусов Цельсия. Этот теплонагревательный эффект можно использовать для нагрева воды для бытовых нужд или для отопления дома.
  2. Схема нагревателя рассмотренного выше (рисунок 3) , при максимальной нагрузке способна обеспечить излучение магнитной энергии внутри катушки равное 500 Вт. Такой мощности недостаточно для нагрева большого объёма воды, а сооружение индукционной катушки высокой мощности потребует изготовление схемы, в которой необходимо будет использовать очень дорогие радиоэлементы.
  3. Бюджетным решением организации индукционного нагрева жидкости , является использование нескольких устройств описанных выше, расположенных последовательно. При этом, спирали должны находиться на одной линии и не иметь общего металлического проводника.
  4. В качестве используется труба из нержавеющей стали диаметром 20 мм. На трубу «нанизываются» несколько индукционных спиралей, таким образом, чтобы теплообменник оказался в середине спирали и не соприкасался с её витками. При одновременном включении 4 таких устройств, мощность нагрева будет составлять порядка 2 Квт, что уже достаточно для проточного нагрева жидкости при небольшой циркуляции воды, до значений позволяющих использовать данную конструкцию в снабжении тёплой водой небольшого дома.
  5. Если соединить такой нагревательный элемент с хорошо изолированным баком , который будет расположен выше нагревателя, то в результате получится бойлерная система, в которой нагрев жидкости будет осуществляться внутри нержавеющей трубы, нагретая вода будет подниматься вверх, а её место будет занимать более холодная жидкость.
  6. Если площадь дома значительна , то количество индукционных спиралей может быть увеличено до 10 штук.
  7. Мощность такого котла можно легко регулировать путём отключения или включения спиралей. Чем больше одновременно включённых секций, тем больше будет мощность работающего таким образом отопительного устройства.
  8. Для питания такого модуля понадобится мощный блок питания. Если есть в наличии инверторный сварочный аппарат постоянного тока, то из него можно изготовить преобразователь напряжения необходимой мощности.
  9. Благодаря тому, что система работает на постоянном электрическом токе , который не превышает 40 В, эксплуатация такого устройства относительно безопасна, главное обеспечить в схеме питания генератора блок предохранителей, которые в случае короткого замыкания обесточат систему, там самым исключив возможность возникновения пожара.
  10. Можно таким образом организовать “бесплатное” отопление дома , при условии установки для питания индукционных устройств аккумуляторных батарей, зарядка которых будет осуществляться за счёт энергии солнца и ветра.
  11. Аккумуляторы следует объединить в секции по 2 шт., подключённые последовательно. В результате, напряжение питания при таком подключении будет не менее 24 В., что обеспечит работу котла на высокой мощности. Кроме этого, последовательное подключение позволит снизить силу тока в цепи и увеличить срок эксплуатации аккумуляторов.


  1. Эксплуатация самодельных устройств индукционного нагрева , не всегда позволяет исключить распространение вредного для человека электромагнитного излучения, поэтому индукционный котёл следует устанавливать в нежилом помещении и экранировать оцинкованной сталью.
  2. Обязательно при работе с электричеством следует соблюдать правила техники безопасност и, особенно это касается сетей переменного тока напряжением 220 В.
  3. В качестве эксперимента можно изготовить варочную поверхность для приготовления пищи по схеме указанной в статье, но эксплуатировать данный прибор постоянно не рекомендуется по причине несовершенства самостоятельного изготовления экранирования данного устройства, из-за этого возможно воздействие на организм человека вредного электромагнитного излучения, способного негативно сказаться на здоровье.

Индукционная плавка - широко распространенный в черной и цвет­ной металлургии процесс. Плавка в устройствах с индукционным нагревом нередко превосходит плавку в топливных печах по эффективности исполь­зования энергии, качеству продукта и гибкости производства. Эти пре-

современных электротехнологий

имущества обусловлены специфическими физическими характеристиками индукционных печей.

При индукционной плавке происходит перевод твердого материала в жидкую фазу под воздействием электромагнитного поля. Так же как в слу­чае индукционного нагрева, тепло выделяется в расплавляемом материале вследствие эффекта Джоуля от наведенных вихревых токов. Первичный ток, проходящий через индуктор, создает электромагнитное поле. Вне за­висимости от того, концентрируется электромагнитное поле магнитопро - водами или нет, связанная система индуктор - загрузка может быть пред­ставлена как трансформатор с магнитопроводом или как воздушный трансформатор. Электрический КПД системы сильно зависит от влияющих на поле характеристик ферромагнитных конструктивных элементов.

Наряду с электромагнитными и тепловыми явлениями в процессе индукционной плавки важную роль играют электродинамические силы. Эти силы должны учитываться, особенно в случае плавки в мощных ин­дукционных печах. Взаимодействие индуктированных электрических то­ков в расплаве с результирующим магнитным полем вызывает механиче­скую силу (силу Лоренца)

Давление Потоки расплава

Рис. 7.21. Действие электромагнитных сил

Например, вызванное силами турбулентное движение расплава име­ет очень большое значение как для хорошего теплообмена, так и для пере­мешивания и адгезии непроводящих частиц, находящихся в расплаве.

Различают два основных типа индукционных печей: индукционные тигельные печи (ИТП) и индукционные канальные печи (ИКП). В ИТП расплавляемый материал обычно загружается кусками в тигель (рис. 7.22). Индуктор охватывает тигель и расплавляемый материал. Из-за отсутствия концентрирующего поля магнитопровода электромагнитная связь между

современных электротехнологий

индуктором и загрузкой сильно зависит от толщины стенки керамического тигля. Для обеспечения высокого электрического КПД изоляция должна быть как можно тоньше. С другой стороны, футеровка должна быть доста­точно толстой для того, чтобы противостоять термическим напряжениям и

движению металла. Следовательно, следует искать компромисс между электрическими и прочностными критериями.

Важными характеристиками индукционной плавки в ИТП являются движение расплава и мениск как результат воздействия электромагнитных сил. Движение расплава обеспечивает как равномерное распределение температуры, так и однородный химический состав. Эффект перемешива­ния у поверхности расплава снижает потери материала во время дозагруз - ки малоразмерной шихты и добавок. Несмотря на использование дешевого материала воспроизводство расплава постоянного состава обеспечивает высокое качество литья.

В зависимости от размеров, рода расплавляемого материала и облас­ти применения ИТП работают на промышленной частоте (50 Гц) или сред-

современных электротехнологий

них частотах до 1000 Гц. Последние приобретают все более важное значе­ние благодаря высокой эффективности при плавке чугуна и алюминия. По­скольку движение расплава при постоянной мощности ослабляется с по­вышением частоты, на более высоких частотах становятся доступными бо­лее высокие удельные мощности и, как следствие, большая производи­тельность. Вследствие более высокой мощности сокращается время плав­ки, что ведет к повышению КПД процесса (по сравнению с печами, рабо­тающими на промышленной частоте). С учетом других технологических преимуществ, таких как гибкость при смене выплавляемых материалов, среднечастотные ИТП разработаны как мощные плавильные установки, доминирующие в настоящее время в чугунолитейном производстве. Со­временные мощные среднечастотные ИТП для плавки чугуна имеют ем­кость до 12 т и мощность до 10 МВт. ИТП промышленной частоты разра­батываются для больших емкостей, чем среднечастотные, до 150 т для плавки чугуна. Интенсивное перемешивание ванны имеет особое значение при выплавке однородных сплавов, например латуни, поэтому в этой об­ласти широко используются ИТП промышленной частоты. Наряду с при­менением тигельных печей для плавки в настоящее время их используют также для выдержки жидкого металла перед разливкой.

В соответствии с энергетическим балансом ИТП (рис. 7.23) уровень электрического КПД почти для всех типов печей составляет около 0,8. Приблизительно 20 % исходной энергии теряется в индукторе в виде Джо - улева тепла. Отношение тепловых потерь через стенки тигля к индуктиро­ванной в расплаве электрической энергии достигает 10 %, поэтому полный КПД печи составляет около 0,7.

Вторым широко распространенным типом индукционных печей яв­ляются ИКП. Они применяются для литья, выдержки и, особенно, плавки в черной и цветной металлургии. ИКП в общем случае состоит из керамиче­ской ванны и одной или нескольких индукционных единиц (рис. 7.24). В

принципе, индукционная единица может быть представлена как трансфор-

Принцип действия ИКП требует наличия постоянно замкнутого вто­ричного витка, поэтому эти печи работают с жидким остатком расплава. Полезное тепло генерируется главным образом в канале, имеющем малое сечение. Циркуляция расплава под действием электромагнитных и терми­ческих сил обеспечивает достаточный перенос тепла в основную массу расплава, находящуюся в ванне. До настоящего времени ИКП проектиро­вались на промышленную частоту, однако исследовательские работы про­водятся и для более высоких частот. Благодаря компактной конструкции печи и очень хорошей электромагнитной связи ее электрический КПД дос­тигает 95%, а общий КПД - 80 % и даже 90 % в зависимости от расплав­ляемого материала.

В соответствии с технологическими условиями в разных областях применения ИКП требуются различные конструкции индукционных кана­лов. Одноканальные печи используются в основном для выдержки и литья,

современных электротехнологий

реже плавки стали при установленных мощностях до 3 МВт. Для плавки и выдержки цветных металлов предпочтительнее двухканальные конструк­ции, обеспечивающие лучшее использование энергии. В установках для плавки алюминия каналы выполняются прямыми для удобства очистки.

Производство алюминия, меди, латуни и их сплавов является основ­ной областью применения ИКП. Сегодня наиболее мощные ИКП емкостью

до 70 т и мощностью до 3 МВт используются для плавки алюминия. Наря­ду с высоким электрическим КПД в производстве алюминия очень важны низкие потери расплава, что и предопределяет выбор ИКП.

Перспективными применениями технологии индукционной плавки являются производство высокочистых металлов, таких как титан и его сплавы, в индукционных печах с холодным тиглем и плавка керамики, на­пример силиката циркония и оксида циркония.

При плавке в индукционных печах ярко проявляются преимущества индукционного нагрева, такие как высокая плотность энергии и произво­дительность, гомогенизация расплава благодаря перемешиванию, точный

современных электротехнологий

энергетический и температурный контроль, а также простота автоматиче­ского управления процессом, легкость ручного управления и большая гиб­кость. Высокие электрический и тепловой КПД в сочетании с низкими по­терями расплава и, следовательно, экономией сырья обусловливают низ­кий удельный расход энергии и экологическую конкурентоспособность.

Превосходство индукционных плавильных устройств над топливны­ми непрерывно возрастает благодаря практическим исследованиям, под­крепленным численными методами решения электромагнитной и гидроди­намической задач. В качестве примера можно отметить внутреннее покры­тие медными полосами стального кожуха ИКП для плавки меди. Умень­шение потерь от вихревых токов повысило КПД печи на 8 %, и он достиг 92 %.

Дальнейшее улучшение экономических показателей индукционной плавки возможно за счет применения современных технологий управле­ния, таких как тандем или управление двойным питанием. Две ИТП тан­дема имеют один источник питания, и пока в одной идет плавка, в другой расплавленный металл выдерживается для разливки. Переключение источ­ника питания с одной печи на другую повышает коэффициент его исполь­зования. Дальнейшим развитием этого принципа является управление двойным питанием (рис. 7.25), которое обеспечивает продолжительную одновременную работу печей без переключения с помощью специальной автоматики управления процессом. Следует также отметить, что неотъем­лемой частью экономики плавки является компенсация общей реактивной мощности.

В заключение для демонстрации преимуществ энерго - и материалос­берегающей индукционной технологии можно сравнить топливный и элек­тротермический способы плавки алюминия. Рис. 7.26 показывает значи­тельное снижение энергопотребления на тонну алюминия при плавке в

Глава 7. Энергосберегающие возможности современных электротехнологий

□ потери металла; Щ плавление

современных электротехнологий

индукционной канальной печи емкостью 50 т. Потребляемая конечная энергия уменьшается примерно на 60 %, а первичная на 20 %. Наряду с этим значительно сокращается выброс СО2. (Все расчеты основываются на типичных для Германии коэффициентах преобразования энергии и выде­ления СО2 при работе смешанных электростанций). Полученные результа­ты подчеркивают особое влияние потерь металла при плавке, связанных с его окислением. Их компенсация требует большого дополнительного рас­хода энергии. Примечательно, что в производстве меди потери металла при плавке также велики и должны учитываться при выборе той или иной технологии плавки.

Плита – ключевой элемент бытовой техники, без которого невозможно обойтись ни на одной кухне.

И если раньше помощницами хозяек были электрические и , то сейчас популярность приобретают индукционные печи. И это оправданно, ведь они обладают массой неоспоримых преимуществ: пожаробезопасностью, экономичностью, высокой скоростью разогрева и приготовления пищи.
Индукционные печи- самая современная бытовая техника для кухни

Принцип работы индукционной печи

На рынке бытовой техники индукционная печь появилась в 80-х годах прошлого столетия, однако к изобретению отнеслись недоверчиво из-за высокой стоимости и непонятного принципа функционирования. Только после того, как рестораторы начали использовать индукционную панель и прочувствовали ее преимущества, их примером воспользовались хозяйки, желающие упростить и ускорить приготовление пищи.

Принцип работы индукционных плит основан на использовании энергии магнитного поля. Стеклокерамическая под собой медную катушку, при прохождении через витки которой электрический ток преобразуется в индукционный. При размещении на конфорке посуды с магнитным дном ток воздействует на электроны ее ферромагнитного материала, приводя их в движение. Вследствие этого процесса происходит выделение тепла, благодаря которому посуда нагревается и находящееся в ней содержимое приходит в стадию приготовления.

Для приготовления пищи на индукционной плите нужна специальная посуда

Индукционные принципиально отличаются от электрических и газовых, следующими аспектами:

  1. Нагрев покрытия. В традиционных печках в первую очередь нагревается конфорка, после чего передает тепло, стоящей на ней посуде. Индукционный нагрев предполагает разогрев непосредственно дна сковороды либо кастрюли. Стеклокерамическая панель при этом нагревается от посуды, а после ее снятия остывает в течение 5 минут.
  2. Коэффициент полезного действия. Индукционные электрические плиты имеют КПД 90% за счет того, что энергия не тратится на нагревание конфорки, а воздействует на дно кастрюли.
  3. Экономия электроэнергии. Регулировка температуры индукционной печи происходит практически моментально, что ведет к рациональному потреблению электроэнергии.
  4. Безопасность. При работе печки сама панель не нагревается, поэтому можно не бояться получения ожогов.

Особенности приготовления еды

Часто хозяйки преднамеренно отказываются от покупки электроиндукционных печей, поскольку опасаются сложностей при включении и готовке. На самом деле в том, чтобы включить индукционную плиту, нет ничего сложного.

После подключения прибора к источнику питания сработает сигнал, оповещающий о возможности включения варочной панели. Каждая зона имеет регулятор мощности и настраиваемый таймер.

Необычный дизайн индукционной плиты

О том, как готовить на индукционной плите, подробно расписано в инструкции по ее применению. Там обозначены температурные режимы и параметры мощности, необходимые для конкретного процесса приготовления того или иного блюда. Например, закипание воды происходит на 7-9 уровне, тушение – 5 или 6.

Виды плит

На рынке бытовой техники представлены печи различной функциональности и стоимости. Пользователи могут приобрести как недорогие индукционные плиты для кухни, так и многофункциональные системы, монтируемые в кафе и ресторанах.

К основным видам этого оборудования относятся:

  • компактные настольные индукционные плиты с одной или несколькими конфорками;
  • встраиваемая техника либо отдельные варочные панели;
  • комбинированные плиты – совмещают элементы, работающие на принципе магнитной индукции, и электрические нагревательные конфорки.

Комбинированная индукционно-газовая плита

При выборе печки на основе энергии магнитного поля стоит обращать внимание на возможности мощности и количество режимов. Функция интенсивного нагрева позволяет приготовить блюдо быстрее.

Инфракрасные сенсоры контролируют максимальный нагрев дна кастрюли и предотвращают пригорание пищи: на мой взгляд, эта функция необходима в приборе.

Задуматься стоит и о форме конфорки: она может быть плоской или углубленной. От этого будет зависеть возможность использования посуды с различным дном. Многофункциональные устройства, такие как индукционные плиты с духовым шкафом и большим количеством конфорок, позволят одновременно приготовить несколько блюд.

Технические характеристики

В зависимости от типа и стоимости электроиндукционные печи имеют следующие технические характеристики:

  • максимальная температура нагрева составляет 60 градусов Цельсия;
  • мощность колеблется в диапазоне 50-3500 Вт;
  • количество режимов регулировки дифференцируется от 12 до 20 в зависимости от вида прибора;
  • устройства оснащены сенсорной панелью;
  • нагревательный элемент действует на основе индукции;
  • прибор оснащен таймером.

Как и любая техника, этот не застрахован от поломок, однако найти запчасти для индукционных плит не составит никакого труда. Кроме того, люди, разбирающиеся в законах физики, запросто смогут изготовить индукционную плиту своими руками. Однако, помните, что браться за это дело стоит лишь в случае наличия необходимых знаний и опыта.

Подбираем посуду для индукционной плиты

Многие хозяйки уверены, что всю посуду для индукционной плиты придется покупать заново, поскольку имеющаяся не подойдет. Это не совсем так.

Для приведения индукционной варочной панели в режим работы необходимо использовать посуду, обладающую ферромагнитными свойствами. Проверить это достаточно просто: нужно приложить магнит ко дну. Если он прилипнет, посуда подходит для использования на плите.

Ферромагнитными свойствами обладает железные, эмалированные и чугунные кастрюли. Стеклянные, керамические, фарфоровые и медные емкости не подходят для печи, использующей энергию магнитного поля.

В случае когда подходящих кастрюль и сковородок в наличии нет, выбрать посуду для индукционных плит не составит труда, если воспользоваться несколькими советами:

  • дно индукционной посуды должно иметь диаметр не менее 12 см для обеспечения оптимальной площади соприкосновения с поверхностью печки;
  • толщина днища сковороды гриль для индукционной плиты или другой емкости должна составлять не менее 2 и не более 6 мм;
  • поверхность дна должна быть ровной, без изгибов;
  • помочь в выборе правильной емкости может значок на посуде для индукционных плит, который выглядит как горизонтальная спираль и означает использование ферромагнитного материала.

Существует много фирм, занимающихся выпуском кастрюль, сковородок, сотейников, жаровен и даже турок для индукционных плит. Поэтому купить их не составит труда.

ПОСМОТРЕТЬ ВИДЕО

Если возможность приобрести полный набор специальной посуды отсутствует, можно воспользоваться адаптером для индукционной плиты. Он представляет собой диск толщиной 2-3 мм с различным диаметром в зависимости от размера кастрюль и сковородок. Принцип действия таков: катушка передает тепло переходнику для индукционной плиты, который, в свою очередь, нагревает стоящую на нем посуду. При использовании такого устройства не обязательно покупать специальный чайник для индукционной плиты, можно запросто пользоваться любимым керамическим.

Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию.

В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле. Это — первое превращение энергии электромагнитного поля, описываемое первым уравнением Максвелла .

Нагреваемый объект помещают внутрь индуктора или рядом с ним. Изменяющийся (во времени) поток вектора магнитной индукции, созданной индуктором, пронизывает нагреваемый объект и индуктирует электрическое поле. Электрические линии этого поля расположены в плоскости, перпендикулярной направлению магнитного потока, и замкнуты, т. е. электрическое поле в нагреваемом объекте носит вихревой характер. Под действием электрического поля, согласно закону Ома, возникают токи проводимости (вихревые токи). Это — второе превращение энергии электромагнитного поля, описываемое вторым уравнением Максвелла .

В нагреваемом объекте энергия индуктированного переменного электрического поля необратимо переходит в тепловую. Такое тепловое рассеивание энергии, следствием чего является нагрев объекта, определяется существованием токов проводимости (вихревых токов). Это — третье превращение энергии электромагнитного поля, причем энергетическое соотношение этого превращения описывается законом Ленца-Джоуля .

Описанные превращения энергии электромагнитного поля дают возможность:
1) передать электрическую энергию индуктора в нагреваемый объект, не прибегая к контактам (в отличие от печей сопротивления)
2) выделить тепло непосредственно в нагреваемом объекте (так называемая «печь с внутренним источником нагрева» по терминологии проф. Н. В. Окорокова), в результате чего использование тепловой энергии оказывается наиболее совершенным и скорость нагрева значительно увеличивается (по сравнению с так называемыми «печами с внешним источником нагрева»).

На величину напряженности электрического поля в нагреваемом объекте оказывают влияние два фактора: величина магнитного потока, т. е. число магнитных силовых линий, пронизывающих объект (или сцепленных с нагреваемым объектом), и частота питающего тока, т. е. частота изменений (во времени) магнитного потока, сцепленного с нагреваемым объектом.

Это дает возможность выполнить два типа установок индукционного нагрева, которые различаются и по конструкции и по эксплуатационным свойствам: индукционные установки с сердечником и без сердечника.

По технологическому назначению установки индукционного нагрева подразделяют на плавильные печи для плавки металлов и нагревательные установки для термической обработки (закалки, отпуска), для сквозного нагрева заготовок перед пластической деформацией (ковкой, штамповкой), для сварки, пайки и наплавки, для химико-термической обработки изделий и т. д.

По частоте изменения тока, питающего установку индукционного нагрева, различают:
1) установки промышленной частоты (50 Гц), питающиеся от сети непосредственно или через понижающие трансформаторы;
2) установки повышенной частоты (500-10000 Гц), получающие питание от электромашинных или полупроводниковых преобразователей частоты;
3) высокочастотные установки (66 000-440 000 Гц и выше), питающиеся от ламповых электронных генераторов.

Установки индукционного нагрева с сердечником

В плавильной печи (рис. 1) цилиндрический многовитковый индуктор, изготовленный из медной профилированной трубки, насаживают на замкнутый сердечник, набранный из листовой электротехнической стали (толщина листов 0,5 мм). Вокруг индуктора размещают огнеупорную керамическую футеровку с узким кольцевым каналом (горизонтальным или вертикальным), где находится жидкий металл. Необходимым условием работы является замкнутое электропроводное кольцо. Поэтому невозможно расплавить отдельные куски твердого металла в такой печи. Для пуска печи приходится в канал заливать порцию жидкого металла из другой печи или оставлять часть жидкого металла от предыдущей плавки (остаточная емкость печи).

Рис.1. Схема устройства индукционной канальной печи: 1 - индикатор; 2 - металл; 3 - канал; 4 - магнитопровод; Ф - основной магнитный поток; Ф 1р и Ф 2р - магнитные потоки рассеяния; U 1 и I 1 - напряжение и ток в цепи индуктора; I 2 - ток проводимости в металле

В стальном магнитопроводе индукционной канальной печи замыкается большой рабочий магнитный поток и лишь небольшая часть полного магнитного потока, создаваемого индуктором, замыкается через воздух в виде потока рассеяния. Поэтому такие печи успешно работают на промышленной частоте (50 Гц).

В настоящее время существует большое число типов и конструкций таких печей, разработанных во ВНИИЭТО (однофазные и многофазные с одним и несколькими каналами, с вертикальным и горизонтальным закрытым каналом разной формы). Эти печи применяют для плавки цветных металлов и сплавов со сравнительно низкой температурой плавления, а также для получения высококачественного чугуна. При плавке чугуна печь используют либо в качестве копильника (миксера), либо в качестве плавильного агрегата. Конструкции и технические характеристики современных индукционных канальных печей приведены в специальной литературе.

Установки индукционного нагрева без сердечника

В плавильной печи (рис. 2) расплавляемый металл находится в керамическом тигле, помещенном внутрь цилиндрического многовиткового индуктора. изготовляют из медной профилированной трубки, через которую пропускают охлаждающую воду. Узнать подробнее о конструкции индуктора можно .

Отсутствие стального сердечника приводит к резкому увеличению магнитного потока рассеяния; число магнитных силовых линий, сцепляемых с металлом в тигле, будет крайне мало. Это обстоятельство требует соответствующего увеличения частоты изменения (во времени) электромагнитного поля. Поэтому для эффективной работы индукционных тигельных печей приходится питать их токами повышенной, а в отдельных случаях и высокой частоты от соответствующих преобразователей тока. Подобные печи имеют очень низкий естественный коэффициент мощности (cos φ=0,03-0,10). Поэтому необходимо применять конденсаторы для компенсации реактивной (индуктивной) мощности.

В настоящее время имеется несколько типов индукционных тигельных печей, разработанных во ВНИИЭТО в виде соответствующих размерных рядов (по емкости) высокой, повышенной и промышленной частоты, для плавки стали (тип ИСТ).


Рис. 2. Схема устройства индукционной тигельной печи: 1 - индуктор; 2 - металл; 3 - тигель (стрелками показана траектория циркуляции жидкого металла в результате электродинамических явлений)

Преимуществами тигельных печей являются следующие: выделяющееся непосредственно в металле тепло, высокая равномерность металла по химическому составу и температуре, отсутствие источников загрязнения металла (помимо футеровки тигля), удобство управления и регулирования процесса плавки, гигиеничность условий труда. Кроме этого, для индукционных тигельных печей характерны: более высокая производительность вследствие высоких удельных (на единицу емкости) мощностей нагрева; возможность плавить твердую шихту, не оставляя металл от предыдущей плавки (в отличие от канальных печей); малая масса футеровки по сравнению с массой металла, что уменьшает аккумуляцию тепловой энергии в футеровке тигля, снижает тепловую инерцию печи и делает плавильные печи этого типа исключительно удобными для периодической работы с перерывами между плавками, в частности для фасонно-литейных цехов машиностроительных заводов; компактность печи, что позволяет достаточно просто изолировать рабочее пространство от окружающей среды и осуществлять плавку в вакууме или в газовой среде заданного состава. Поэтому в металлургии широко применяют вакуумные индукционные тигельные печи (тип ИСВ).

Наряду с преимуществами у индукционных тигельных печей имеются следующие недостатки: наличие относительно холодных шлаков (температура шлака меньше температуры металла), затрудняющих проведение рафинировочных процессов при выплавке качественных сталей; сложное и дорогое электрооборудование; низкая стойкость футеровки при резких колебаниях температуры вследствие небольшой тепловой инерции футеровки тигля и размывающего действия жидкого металла при электродинамических явлениях. Поэтому такие печи применяют для переплава легированных отходов с целью снижения угара элементов.

Использованная литература:
1. Егоров А.В., Моржин А.Ф. Электрические печи (для производства сталей). М.: «Металлургия», 1975, 352 с.

Плавка металла методом индукции широко применяется в различных отраслях: металлургии, машиностроении, ювелирном деле. Простую печь индукционного типа для плавки металла в домашних условиях можно собрать своими руками.

принцип действия
Нагрев и плавка металлов в индукционных печах происходит за счет внутреннего нагрева и изменения кристаллической решетки металла при прохождении через нее высокочастотных вихревых токов. В основе этого процесса лежит явление резонанса, при котором вихревые токи имеют максимальное значение. Чтобы вызвать протекание вихревых токов через расплавляемый металл, его помещают в зону действия электромагнитного поля индуктора — катушки. Она может иметь форму спирали, восьмерки или трилистника. Форма индуктора зависит от размеров и формы нагреваемой заготовки.
Катушка индуктора подключается к источнику переменного тока. В производственных плавильных печах используют токи промышленной частоты 50 Гц, для плавки небольших объемов металлов в ювелирном деле используют высокочастотные генераторы, как более эффективные.

виды
Вихревые токи замыкаются по контуру, ограниченному магнитным полем индуктора. Поэтому нагрев токопроводящих элементов возможен как внутри катушки, так и с внешней ее стороны. Поэтому индукционные печи бывают двух типов:
канальные, в которых емкостью для плавки металлов являются каналы, расположенные вокруг индуктора, а внутри него расположен сердечник;
тигельные, в них используется специальная емкость — тигель, выполненный из жаропрочного материала, обычно съемный.

Канальная печь слишком габаритная и рассчитана на промышленные объемы плавки металлов. Ее используют при выплавке чугуна, алюминия и других цветных металлов. Тигельная печь достаточно компактная, ей пользуются ювелиры, радиолюбители, такую печь можно собрать своими руками и применять в домашних условиях.

устройство
Самодельная печь для плавки металлов имеет достаточно простую конструкцию и состоит из трех основных блоков, помещенных в общий корпус:
генератор переменного тока высокой частоты;
индуктор — спиралевидная обмотка из медной проволоки или трубки, выполненная своими руками;
тигель.

Тигель помещают в индуктор, концы обмотки подключают к источнику тока. При протекании тока по обмотке вокруг нее возникает электромагнитное поле с изменяемым вектором. В магнитном поле возникают вихревые токи, направленные перпендикулярно его вектора и проходят по замкнутому контуру внутри обмотки. Они проходят через металл, положенный в тигеле, при этом нагревая его до температуры плавления.

Индукционная печь и ее преимущества:

Быстрый и равномерный нагрев металла сразу после включения установки;
направленность нагрева — греется только металл, а не вся установка;
высокая скорость плавления и однородность расплава;
отсутствует испарение легирующих компонентов металла;
установка экологически чистая и безопасная.

В качестве генератора индукционной печи для плавки металла может быть использован сварочный инвертор. Также можно собрать генератор по представленным ниже схемам своими руками.

Печь для плавки металла на сварочном инверторе
Эта конструкция отличается простотой и безопасностью, так как все инверторы оборудованы внутренними защитами от перегрузок. Вся сборка печи в этом случае сводится к изготовлению своими руками индуктора. Выполняют его обычно в форме спирали из медной тонкостенной трубки диаметром 8-10 мм. Ее сгибают по шаблону нужного диаметра, располагая витки на расстоянии 5-8 мм. Количество витков — от 7 до 12 в зависимости от диаметра и характеристик инвертора. Общее сопротивление индуктора должно быть таким, чтобы не вызвать перегрузки по току в инверторе, иначе он будет отключаться внутренней защитой. Индуктор можно закрепить в корпусе из графита или текстолита и установить внутрь тигель. Можно просто поставить индуктор на термостойкую поверхность. Корпус не должен проводить ток, иначе замыкания вихревых токов будет проходить через него, и мощность установки снизится. По этой же причине не рекомендуется располагать в зоне плавления посторонние предметы. При работе от сварочного инвертора его корпус нужно обязательно заземлить! Розетка и проводка должны быть рассчитаны на потребляемый инвертором ток.

Индукционная печь на транзисторах: схема

Существует множество различных способов собрать индукционный нагреватель своими руками.
Чтобы собрать установку своими руками, понадобятся следующие детали и материалы:
два полевых транзистора типа IRFZ44V;
два диода UF4007 (можно также использовать UF4001)
резистор 470 Ом, 1 Вт (можно взять два последовательно соединенных по 0,5 Вт)
пленочные конденсаторы на 250 В: 3 штуки емкостью 1 мкФ; 4 штуки — 220 нФ; 1 штука — 470 нФ; 1 штука — 330 нФ;
медные обмоточные провода в эмалевой изоляции Ø1,2 мм;
медные обмоточные провода в эмалевой изоляции Ø2 мм;
два кольца от дросселей, снятых с компьютерного блока питания.

* Полевые транзисторы устанавливают на радиаторы. Поскольку схема в процессе работы сильно греется, радиаторы должны быть достаточно большими. Можно установить их и на один радиатор, но тогда нужно изолировать транзисторы от металла с помощью прокладок и шайб из резины и пластика.
* Необходимо изготовить два дросселя. Для их изготовления нужна медная проволока диаметром 1,2 мм, ее наматывают на кольца, снятые с блока питания любого компьютера. Эти кольца состоят из порошкового ферромагнитного железа. На них необходимо намотать от 7 до 15 витков провода, пытаясь выдерживать расстояние между витками.
* Собирают вышеперечисленные конденсаторы в батарею общей емкостью 4,7 мкФ. Соединение конденсаторов — параллельное.
* Выполняют обмотку индуктора из медной проволоки диаметром 2 мм. Наматывают на подходящий по диаметру тигля цилиндрический предмет 7-8 витков обмотки, оставляют достаточно длинные концы для подключения к схеме.
* Соединяют элементы на плате согласно схеме. В качестве источника питания используют аккумулятор на 12 В, 7,2 A / h. Ток в режиме работы — около 10 А, емкости аккумулятора в этом случае хватит примерно на 40 минут. При необходимости производят корпус печи из термостойкого материала, например, текстолита. Мощность устройства можно изменить, поменяв количество витков обмотки индуктора и их диаметр.

При длительной работе элементы нагревателя могут перегреваться! Для их охлаждения можно использовать вентилятор.

Индукционная печь на лампах

Более мощную индукционную печь для плавки металлов можно собрать своими руками на электронных лампах. Для генерации высокочастотного тока используются 4 лучевые лампы, соединенные параллельно. Как индуктор используется медная трубка диаметром 10 мм. Установка оснащена подстроечным конденсатором для регулирования мощности. Представляется частота — 27,12 МГц.

Для составления схемы необходимы:
4 электронные лампы — тетрода, можно использовать 6L6, 6П3 или Г807;
4 дросселя на 100 … 1000 мкГн;
4 конденсатора на 0,01 мкФ;
неоновая лампа-индикатор;
подстроечный конденсатор.

Сборка устройства своими руками:
1. Из медной трубки выполняют индуктор, сгибая ее в форме спирали. Диаметр витков — 8-15 см, расстояние между витками не менее 5 мм. Концы лудят. Диаметр индуктора должен быть больше диаметра размещающегося внутри тигля на 10 мм.
2. Размещают индуктор в корпусе. Его можно изготовить из термостойкого не проводящего ток материала, либо из металла, предусмотрев термо- и электроизоляцию от элементов схемы.
3. Собирают каскады ламп по схеме с конденсаторами и дросселями. Каскады соединяют в параллель.
4. Подключают неоновую лампу-индикатор — она будет сигнализировать о готовности схемы к работе. Лампу выводят на корпус установки.
5. В схему включают подстроечный конденсатор переменной емкости, его ручку также выводят на корпус.

Индукционная печь — охлаждение схемы

Промышленные плавильные установки оснащены системой принудительного охлаждения водой или антифризом. Выполнение водяного охлаждения в домашних условиях потребует дополнительных расходов, сопоставимых по цене со стоимостью самой установки для плавки металла. Выполнить воздушное охлаждение с помощью вентилятора можно при условии достаточно удаленного расположения вентилятора. В противном случае металлическая обмотка и другие элементы вентилятора будут служить дополнительным контуром для замыкания вихревых токов, что снизит эффективность работы установки. Элементы электронной и ламповой схемы также способны активно нагреваться. Для их охлаждения предусматриваются теплоотводящие радиаторы.

Меры безопасности при работе
Основная опасность при работе с самодельной установкой — опасность получения ожогов от нагревательных элементов установки и расплавленного металла.
Ламповая схема включает элементы с высоким напряжением, поэтому ее нужно разместить в закрытом корпусе, исключив случайное прикосновение к элементам.
Электромагнитное поле способно влиять на предметы, находящиеся вне корпуса прибора. Поэтому перед работой лучше надеть одежду без металлических элементов, убрать из зоны действия сложные устройства: телефоны, цифровые камеры.

Индукционная печь для плавки металлов в домашних условиях может использоваться также для быстрого нагрева металлических элементов, например, при их лужении или формировании. Характеристики работы представленных установок можно подогнать под конкретную задачу, изменяя параметры индуктора и выходной сигнал генераторных установок — так можно добиться их максимальной эффективности.