Тепловой баланс парового котла. КПД котла. Определение кпд котла брутто и нетто Что такое кпд в котлах

Создать уютную и комфортную атмосферу в загородном доме довольно просто – нужно только правильно оборудовать систему отопления. Главным компонентом эффективной и надежной отопительной системы является котел. В статье далее мы поговорим о том, как посчитать КПД котла, какие факторы на него влияют и как повысить эффективность отопительного оборудования в условиях конкретного дома.

Как подобрать котел

Безусловно, чтобы определить, насколько эффективным будет тот или иной водогрейный котел, необходимо определить его КПД (коэффициент полезного действия). Этот показатель представляет собой отношение использованного на обогрев помещения тепла к общему количеству сгенерированной тепловой энергии.


Формула расчета КПД выглядит так:

ɳ=(Q 1 ÷Q ri),

где Q 1 – тепло, использованное эффективно;

Q ri – общее количество выделенного тепла.

Какова зависимость между КПД котла и нагрузкой

На первый взгляд может показаться, что чем больше топлива сжигается, тем лучше работает котел. Однако это не совсем так. Зависимость КПД котла от нагрузки проявляется как раз наоборот. Чем больше топлива сжигается, тем больше выделяется тепловой энергии. При этом возрастает и уровень теплопотерь, поскольку в дымовую трубу уходят сильно разогретые дымовые газы. Следовательно, топливо расходуется неэффективно.


Похожим образом ситуация развивается и в тех случаях, когда отопительный котел работает на пониженной мощности. Если она не дотягивает до рекомендуемых значений более чем на 15 %, топливо не будет сгорать полностью, а количество дымовых газов возрастет. В результате, КПД котла довольно сильно упадет. Вот почему стоит придерживаться рекомендуемых уровней мощности работы котла – они рассчитаны для эксплуатации оборудования максимально эффективно.

Расчет КПД с учетом различных факторов

Приведенная выше формула не совсем подходит для оценки эффективности работы оборудования, так как рассчитать КПД котла точно с учетом только двух показателей очень сложно. На практике в процессе проектирования применяют другую, более полную формулу, поскольку не все вырабатываемое тепло используется для прогрева воды в отопительном контуре. Определенное количество тепла теряется в процессе работы котла.


Более точный расчет КПД котла производится по такой формуле:

ɳ=100-(q 2 +q 3 +q 4 +q 5 +q 6), в которой

q 2 – теплопотери с выходящими горючими газами;

q 3 – потери тепла в результате неполного сгорания продуктов горения;

q 4 – теплопотери из-за недожога топлива и выпадения золы;

q 5 – потери, вызванные внешним охлаждением прибора;

q 6 – теплопотери вместе с удаляемым из топки шлаком.

Теплопотери при удалении горючих газов

Наиболее существенные потери тепла происходят в результате эвакуации в дымоход горючих газов (q 2). Эффективность котла во многом зависит от температуры горения топлива. Оптимальный температурный напор на холодном конце водонагревателя достигается при нагреве до 70-110 ℃.

Когда температура уходящих горючих газов падает на 12-15 ℃, КПД водогрейного котла возрастает на 1 %. Тем не менее, чтобы снизить температуру уходящих продуктов горения, необходимо увеличить размер прогреваемых поверхностей, а, значит, и всей конструкции в целом. Кроме того, при охлаждении угарных газов возрастает риск низкотемпературной коррозии.


Помимо прочего температура угарных газов зависит еще и от качества и типа топлива, а также нагрева поступающего в топку воздуха. Значения температур поступающего воздуха и выходящих продуктов горения зависят от видов топлива.

Для вычисления показателя теплопотерь с уходящими газами используют такую формулу:

Q 2 = (T 1 -T 3) × (A 2 ÷ (21-O 2) + B), где

T 1 – температура эвакуируемых горючих газов в точке за пароперегревателем;

T 3 – температура поступающего в топку воздуха;

21 – концентрация кислорода в воздухе;

O 2 – количество кислорода в уходящих продуктах горения в контрольной точке;

A 2 и B – коэффициенты из специальной таблицы, которые зависят от типа топлива.

Химический недожог как источник теплопотерь

Показатель q 3 используется при расчете КПД газового котла отопления, например, или в тех случаях, когда топливом служит мазут. Для газовых котлов значение q 3 составляет 0,1-0,2 %. При незначительном избытке воздуха при горении этот показатель равен 0,15 %, а при существенном переизбытке воздуха его не принимают в расчет вовсе. Однако при сжигании смеси из газов различной температуры значение q 3 =0,4-0,5 %.


Если же отопительное оборудование работает на твердом топливе, в расчет принимают показатель q 4 . В частности, для угля антрацита значение q 4 =4-6 %, полуантрациту характерно 3-4 % теплопотерь, а вот при сгорании каменного угля образуется всего 1,5-2 % потерь тепла. При жидком шлакоудалении сжигаемого малореакционного угля значение q4 можно считать минимальным. А вот при удалении шлака в твердом виде теплопотери возрастут до максимальной границы.

Потери тепла в связи с внешним охлаждением

Такие потери тепла q5 обычно составляют не более 0,5 %, а по мере возрастания мощности отопительного оборудования они еще больше сокращаются.

Данный показатель связан с расчетом паропроизводительности котельной установки:

  • При условии паропроизводительности D в пределах 42-250 кг/с, значение потерь тепла q5=(60÷D)×0,5÷lgD;
  • Если значение паропроизводительности D превышает 250 кг/с, уровень теплопотери считают равным 0,2 %.

Количество теплопотерь от удаления шлака

Значение теплопотерь q6 имеет значение только при жидком шлакоудалении. А вот в тех случаях, когда из топочной камеры удаляют шлаки твердого топлива, теплопотери q6 учитывают при расчете КПД котлов отопления только в случаях, если они составляют более 2,5Q.

Как посчитать КПД твердотопливного котла

Даже при условии идеально проработанной конструкции и качественного топлива, КПД отопительных котлов не может достигать 100 %. Их работа обязательно сопряжена с определенными потерями тепла, вызванными как типом сжигаемого топлива, так и рядом внешних факторов и условий. Чтобы понять, как на практике выглядит расчет КПД твердотопливного котла, приведем пример.


Например, теплопотери от удаления шлаков из топливной камеры составят:

q 6 =(А шл ×З л ×А р)÷Q ri ,

где А шл – относительное значение шлака, удаляемого из топки к объему загружаемого топлива. При грамотном использовании котла доля отходов горения в виде золы составляет 5-20 %, то данное значение может быть равно 80-95 %.

З л – термодинамический потенциал золы при температуре в 600 ℃ в обычных условиях равен 133,8 ккал/кг.

А р – зольность топлива, которая рассчитывается на общую массу топлива. В различных видах горючего показатель зольности колеблется от 5 % до 45 %.

Q ri – минимальный объем тепловой энергии, который генерируется в процессе сгорания топлива. В зависимости от разновидности топлива теплоемкость колеблется в рамках 2500-5400 ккал/кг.

В данном случае с учетом указанных значений теплопотери q 6 будут составлять 0,1-2,3 %.

Значение q5 будет зависеть от мощности и проектной производительности отопительного котла. Работа современных установок с малой мощностью, которыми очень часто обогревают частные дома, обычно сопряжена с теплопотерями данного вида в пределах 2,5-3,5 %.

Теплопотери, связанные с механическим недожогом твердого топлива q 4 , во многом зависят от его типа, а также от конструкционных особенностей котла. Они колеблются в пределах 3-11 %. Это стоит учитывать, если вы ищете способ, как наладить котел на более эффективную работу.


Химический недожог горючего обычно зависит от концентрации воздуха в сгораемой смеси. Такие теплопотери q 3 , как правило, равны 0,5-1 %.

Наибольший процент теплопотерь q 2 связан с уходом тепла вместе с горючими газами. На этот показатель влияет качество и вид топлива, степень разогрева горючих газов, а также условия эксплуатации и конструкция отопительного котла. При оптимальном тепловом расчете в 150 ℃ эвакуируемые угарные газы должны быть разогреты до температуры в 280 ℃. В таком случае данное значение теплопотерь будет равно 9-22 %.

Если все перечисленные значения потерь суммировать, получим значение эффективности ɳ=100-(9+0,5+3+2,5+0,1)=84,9 %.

Это значит, что современный котел может работать лишь на 85-90 % мощности. Все остальное уходит на обеспечение процесса горения.

Обратите внимание, что добиться таких высоких значений не так просто. Для этого нужно грамотно подойти к подбору топлива и обеспечить для оборудования оптимальные условия. Обычно производители указывают, с какой нагрузкой должен работать котел. При этом желательно, чтобы основную часть времени он был настроен на экономный уровень нагрузок.


Для работы котла с максимальным КПД, его нужно использовать с учетом таких правил:

  • обязательна периодическая чистка котла;
  • важно контролировать интенсивность горения и полноту сгорания топлива;
  • нужно рассчитать тягу с учетом давления подаваемого воздуха;
  • необходим расчет доли золы.

На качестве сгорания твердого топлива положительным образом отражается расчет оптимальной тяги с учетом давления воздуха, подаваемого в котел, и скорости эвакуации угарных газов. Тем не менее, при возрастании давления воздуха вместе с продуктами сгорания в дымоход удаляется больше тепла. А вот слишком малое давление и ограничение доступа воздуха в топливную камеру приводит к снижению интенсивности горения и более сильному золообразованию.

Если у вас дома установлен отопительный котел, обратите внимание на наши рекомендации по увеличению его КПД. Вы сможете не только сэкономить на топливе, но и добьетесь комфортного микроклимата в доме.

Коэффициент полезного действия котла брутто характеризует эффективность использования поступившей в котел теплоты и не учитывает затрат электрической энергии на привод дутьевых вентиляторов, дымососов, питательных насосов и другого оборудования. При работе на газе

h бр к = 100 × Q 1 / Q c н. (11.1)

Затраты энергии на собственные нужды котельной установки учитываются КПД котла нетто

h н к = h бр к – q т – q э, (11.2)

где q т, q э – относительные расходы на собственные нужды теплоты и электроэнергии, соответственно. К расходам теплоты на собственные нужды относят потери теплоты с продувкой, на обдувку экранов, распыливание мазута и т.д.

Основными среди них являются потери теплоты с продувкой

q т = G пр × (h к.в – h п.в) / (В × Q c н) .

Относительный расход электроэнергии на собственные нужды

q эл = 100 × (N п.н /h п.н + N д.в /h д.в + N д.с /h д.с)/(B × Q c н) ,

где N п.н, N д.в, N д.с – расходы электрической энергии на привод питательных насосов, дутьевых вентиляторов и дымососов, соответственно; h п.н, h д.в, h д.с - КПД питательных насосов, дутьевых вентиляторов и дымососов соответственно.

11.3. Методика выполнения лабораторной работы
и обработки результатов

Балансовые испытания в лабораторной работе проводятся для стационарного режима работы котла при выполнении следующих обязательных условий:

Продолжительность работы котельной установки от растопки до начала испытаний – не менее 36 ч,

Продолжительность выдерживания испытательной нагрузки непосредственно перед испытанием – 3 ч,

Допустимые колебания нагрузки в перерыве между двумя соседними опытами не должны превышать ±10%.

Измерение величин параметров производятся с помощью штатных приборов, установленных на щите котла. Все измерения должны производиться одновременно не менее 3-х раз с интервалом 15-20 мин. Если результаты двух одноименных опытов различаются не более, чем на ±5%, то в качестве результата измерения берется их среднее арифметическое. При большем относительном расхождении используется результат измерения в третьем, контрольном опыте.

Результаты измерений и расчетов записывают в протокол, форма которого приведена в табл. 26.

Таблица 26

Определение потерь теплоты котлом

Наименование параметра Обозн. Ед. измер. Результаты в опытах
№1 №2 №3 Среднее
Объем дымовых газов V г м 3 /м 3
Средняя объемная теплоемкость дымовых газов C г ¢ кДж/ (м 3 ·К)
Температура дымовых газов J °С
Потеря теплоты с уходящими газами Q 2 МДж/м 3
Объем 3-атомных газов V RO 2 м 3 /м 3
Теоретический объем азота V° N 2 м 3 /м 3
Избыток кислорода в уходящих газах a уг ---
Объем воздуха теоретический V° в м 3 /м 3
Объем сухих газов V сг м 3 /м 3
Объем окиси углерода в уходящих газах CO %
Теплота сгорания СО Q СО МДж/м 3
Объем водорода в уходящих газах Н 2 %
Теплота сгорания Н 2 Q Н 2 МДж/м 3
Объем метана в уходящих газах CH 4 %
Теплота сгорания СН 4 Q CH 4 МДж/м 3
Потеря теплоты от химической неполноты сгорания Q 3 МДж/м 3
q 5 %
Потеря теплоты от наружного охлаждения Q 5 МДж/м 3

Окончание табл. 26

Таблица 27

КПД котла брутто и нетто

Наименование параметра Обозн. Ед. измер. Результаты в опытах
№1 №2 №3 Среднее
Расход эл. энергии на привод питательных насосов N п.н
Расход эл. энергии на привод дутьевых вентиляторов N д.в
Расход эл. энергии на привод дымососов N д.с
КПД питательных насосов h пн
КПД дутьевых вентиляторов h дв
КПД дымососов h дм
Относительный расход эл. энергии на собственные нужды q эл
КПД котла нетто h нетто к %

Анализ результатов лабораторной работы

Полученное в результате выполнения работы значение h бр к по методу прямого и обратного балансов необходимо сравнить с паспортной величиной, равной 92,1%.

Анализируя влияние на КПД котла величины потерь теплоты с уходящими газами Q 2 , необходимо отметить, что повышение КПД может быть обеспечено снижением температуры уходящих газов и уменьшением избытка воздуха в котле. Вместе с тем, снижение температуры газов до температуры точки росы приведет к конденсации водяных паров и низкотемпературной коррозии поверхностей нагрева. Снижение величины коэффициента избытка воздуха в топке может привести к недожогу топлива и увеличению потерь Q 3 . Поэтому температура и избыток воздуха должны быть не ниже некоторых значений.

Затем необходимо проанализировать влияние на экономичность работы котла его нагрузки, с ростом которой увеличиваются потери с уходящими газами и снижаются потери Q 3 и Q 5 .

В отчете по лабораторной работе должно быть сделано заключение об уровне экономичности котла.

Контрольные вопросы

  1. По каким показателям работы котла может быть сделано заключение об экономичности его работы?
  2. Что такое тепловой баланс котла? Какими методами он может составляться?
  3. Что понимается под КПД котла брутто и нетто?
  4. Какие потери теплоты увеличиваются при работе котла?
  5. Каким образом можно увеличить q 2 ?
  6. Какие параметры оказывают существенное влияние на величину КПД котла?

Ключевые слова: тепловой баланс котла, КПД котла брутто и нетто, коррозия поверхностей нагрева, коэффициент избытка воздуха, нагрузка котла, потери теплоты, уходящие газы, химическая неполнота сгорания топлива, экономичность работы котла.

ЗАКЛЮЧЕНИЕ

В процессе выполнения лабораторного практикума по курсу котельных установок и парогенераторов студенты знакомятся с методами определения теплоты сгорания жидкого топлива, влажности, выхода летучих и зольности твердого топлива, конструкцией парового котла ДЕ-10-14ГМ и экспериментальным путём исследуют происходящие в нём тепловые процессы.

Будущие специалисты изучают методики испытаний котельного оборудования и получают необходимые практические навыки, необходимые при определении тепловых характеристик топки, составлении теплового баланса котла, измерении его КПД, а также составлении солевого баланса котла и определении величины оптимальной продувки.

Библиографический список

1. Хлебников В.А. Испытания оборудования котельной установки:
Лабораторный практикум. - Йошкар-Ола: МарГТУ, 2005.

2. Сидельковский Л.Н., Юренев В.Н. Котельные установки промышленных предприятий: Учебник для вузов. – М.: Энергоатомиздат, 1988.

3. Трембовля В.И., Фингер Е.Д., Авдеева А.А. Теплотехнические испытания котельных установок. - М.: Энергоатомиздат, 1991.

4. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара: Справочник. Рек. Гос. службой стандартных справочных данных. ГСССД Р-776-98. – М.: Изд-во МЭИ, 1999.

5. Липов Ю.М., Третьяков Ю.М. Котельные установки и парогенераторы. – Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2005.

6. Липов Ю.М., Самойлов Ю.Ф., Третьяков Ю.М., Смирнов О.К. Испытания оборудования котельного отделения ТЭЦ МЭИ. Лабораторный практикум: Учебное пособие по курсу «Котельные установки и парогенераторы». – М.: Изд-во МЭИ, 2000.

7. Роддатис К.Ф., Полтарецкий А.Н. Справочник по котельным установкам малой производительности/Под ред. К.Ф.Роддатиса. – М.: Энергоатомиздат, 1989.

8. Янкелевич В.И. Наладка газомазутных промышленных котельных. – М.: Энергоатомиздат, 1988.

9. Лабораторные работы по курсам «Теплогенерирующие процессы и установки», «Котельные установки промышленных предприятий»/ Сост. Л.М.Любимова, Л.Н.Сидельковский, Д.Л.Славин, Б.А.Соколов и др./ Под ред. Л.Н.Сидельковского. – М.: Изд-во МЭИ, 1998.

10. Тепловой расчет котельных агрегатов (Нормативный метод)/Под ред. Н.В.Кузнецова. – М.:Энергия, 1973.

11. СНиП 2.04.14-88. Котельные установки/Госстрой России. – М.: ЦИТП Госстроя России, 1988.


Учебное издание

ХЛЕБНИКОВ Валерий Алексеевич

КОТЕЛЬНЫЕ УСТАНОВКИ
И ПАРОГЕНЕРАТОРЫ

Лабораторный практикум

Редактор А.С. Емельянова

Компьютерный набор В.В.Хлебников

Компьютерная верстка В.В.Хлебников

Подписано в печать 16.02.08. Формат 60х84/16.

Бумага офсетная. Печать офсетная.

Усл.п.л. 4,4. Уч.изд.л. 3,5. Тираж 80 экз.

Заказ № 3793. С – 32

Марийский государственный технический университет

424000 Йошкар-Ола, пл. Ленина, 3

Редакционно-издательский центр

Марийского государственного технического университета

424006 Йошкар-Ола, ул. Панфилова, 17


В 2020 г. планируется выработать 1720-1820 млн. Гкал.

Миллиграмм-эквивалентом называется количество вещества в миллиграммах, численно равное отношению его молекулярной массы к валентности в данном соединении.

Теплота, выделяющаяся при сгорании топлива, не может быть полностью использована для производства пара или горячей воды, часть теплоты неизбежно теряется, рассеиваясь в окружающей среде. Тепловой баланс котлоагрегата представляет собой специфическую формулировку закона сохранения энергии, утверждающего равенство количества теплоты, вносимой в котельный агрегат, и теплоты, затраченной на производство пара или горячей воды с учетом потерь. В соответствии с «Нормативным методом» все величины, входящие в тепловой баланс, рассчитываются на 1 кг сгоревшего топлива. Приходная часть теплового баланса называется располагаемой теплотой :

где Q- - низшая теплота сгорания топлива, кДж/кг; c T t T - физическая теплота топлива (с т - теплоемкость топлива, / т - температура топлива), кДж/кг; Q B - теплота воздуха, поступающего в топку при подогреве его вне агрегата, кДж/кг; Q n - теплота, вносимая в котельный агрегат с паром, используемым для распыливания мазута, наружной обдувки поверхностей нагрева или подачи под решетку при слоевом сжигании, кДж/кг.

При использовании газообразного топлива расчет выполняется относительно 1 м 3 сухого газа при нормальных условиях.

Физическая теплота топлива играет существенную роль только при предварительном подогреве топлива вне котлоагрегата. Например, мазут перед подачей к горелкам подогревают, поскольку он имеет большую вязкость при низкой температуре.

Теплота воздуха, кДж/ (кг топл.):

где а т - коэффициент избытка воздуха в топке; V 0 H - теоретически необходимое количество воздуха, н.м 3 /кг; с в - изобарная теплоемкость воздуха, кДж/(н.м 3 К); / х в - температура холодного воздуха, °С; t B - температура воздуха на входе в топку, °С.

Теплота, вносимая с паром, кДжДкгтопл.):

где G n - удельный расход дутьевого пара (на распыливание мазута расходуется примерно 0,3 кг пара на 1 кг мазута); / п = 2750 кДж/кг - примерная величина энтальпии водяного пара при температуре уходящих из котлоагрегата продуктов сгорания (около 130 °С).

В приближенных расчетах принимают 0 р ~ Q? ввиду малости других составляющих уравнения (22.2).

Расходная часть теплового баланса состоит из полезно использованной теплоты (получение пара или горячей воды) суммы потерь, кДжДкгтопл.):

где 0 2 - потери теплоты с уходящими из котельного агрегата газами;

  • 03 - потери теплоты от химической неполноты сгорания топлива;
  • 0 4 - потери теплоты от механической неполноты сгорания топлива;
  • 0 5 - потери теплоты через обмуровку в окружающую среду; 0 6 - потери с физической теплотой шлака, удаляемого из котельного агрегата.

Уравнение теплового баланса записывается в виде

В процентах от располагаемой теплоты уравнение (22.6) можно записать:

Полезно использованная теплота в паровом котле с непрерывной продувкой верхнего барабана определяется по уравнению, кДжДкгтопл.):

где D - паропроизводительность котла, кг/с; D np - расход продувочной воды кг/с; В - расход топлива, кг/с; / п, / п в, / к в - энтальпия пара, питательной и котловой воды при давлении в котле соответственно, кДж/кг.

Потери теплоты с уходящими газами, кДж/(кг топл.):

где с г и с в - изобарная теплоемкость продуктов сгорания и воздуха, кДж/(н.м 3 К); г - температура уходящих газов, °С; а ух - коэффициент избытка воздуха на выходе газов из котлоагрегата; К 0 Г и V 0 - теоретический объем продуктов сгорания и теоретически необходимое количество воздуха, н.м 3 /(кгтопл.).

В газоходах котлоагрегата поддерживается разрежение, объемы газов при их движении по газовому тракту котла возрастают из-за присосов воздуха через неплотности в обмуровке котла. Поэтому действительный коэффициент избытка воздуха на выходе из котлоагрегата а ух больше коэффициента избытка воздуха в топке а. Он определяется суммированием коэффициента избытка воздуха в топке и присосов воздуха во всех газоходах. В практике эксплуатации котельных установок необходимо стремиться к уменьшению присосов воздуха в газоходах как к одному из наиболее эффективных средств борьбы с потерями теплоты.

Таким образом, величина потери Q 2 определяется температурой уходящих газов и величиной коэффициента избытка воздуха а ух. В современных котлах температура газов за котлом не опускается ниже 110 °С. Дальнейшее уменьшение температуры приводит к конн денсации содержащихся в газах паров воды и образованию при сжигании серосодержащего топлива серной кислоты, что ускоряет коррозию металлических поверхностей газового тракта. Минимальные потери с уходящими газами составляют q 2 ~ 6-7%.

Потери от химической и механической неполноты сгорания являются характеристиками топочных устройств (см. п. 21.1). Их величина зависит от вида топлива и способа сжигания, а также от совершенства организации процесса горения. Потери от химической неполноты сгорания в современных топках составляют q 3 = 0,5-5%, от механической - q 4 = 0-13,5%.

Потери теплоты в окружающую среду q 5 зависят от мощности котла. Чем выше мощность, тем меньше относительная величина потери q 5 . Так, при паропроизводительности котлоагрегата D= 1 кг/с потерь составляют 2,8%, при D= 10 кг/с q 5 ~ 1%.

Потери теплоты с физической теплотой шлака q b невелики и обычно учитываются при составлении точного теплового баланса, %:

где а шл = 1 - а ун; а ун - доля золы в дымовых газах; с шл и? шл - теплоемкость и температура шлака; А г - зольность рабочего состояния топлива.

Коэффициентом полезного действия (КПД) котлоагрегата называют отношение полезно использованной теплоты сгорания 1 кг топлива на получение пара в паровых котлах или горячей воды в водогрейных к располагаемой теплоте.

КПД котлоагрегата, %:

КПД котлоагрегатов существенно зависит от вида топлива, способа сжигания, температуры уходящих газов и мощности. Паровые котлы, работающие на жидком или газообразном топливе, имеют КПД 90-92%. При слоевом сжигании твердого топлива КПД равняется 70-85%. Необходимо отметить, что КПД котлоагрегатов существенно зависит от качества эксплуатации, особенно от организации топочного процесса. Работа котлоагрегата с давлением пара и производительностью меньше номинальных снижает КПД. В процессе эксплуатации котлов периодически должны проводиться теплотехнические испытания с целью определения потерь и действительного КПД котла, что позволяет внести необходимые коррективы в режим его работы.

Расход топлива для парового котла (кг/с - для твердого и жидкого топлива; н.м 3 /с - газообразного)

где D - паропроизводительность котлоагрегата, кг/с; / п, / п в, / к в - энтальпия пара, питательной и котловой воды соответственно, кДж/кг; Q p - располагаемая теплота, кДж/(кг топл.) - для твердого и жидкого топлива, кДж/(н.м 3) - для газообразного топлива (часто в расчетах принимают Q p ~ Q- ввиду их незначительного различия); П - величина непрерывной продувки, % от паропроизводитель- ности; г| ка - КПД колоагрегата, доли.

Расход топлива для водогрейного котла (кг/с; н.м 3 /с):

где С в - расход воды, кг/с; /, / 2 - начальная и конечная энтальпии воды в котле, кДж/кг.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ КОТЛА

(Boiler efficiency) - отношение количества теплоты, переданной воде котла для превращения ее в пар при сжигании 1 кг топлива, к величине теплотворной способности топлива, т. е. количеству тепла, которое выделяется при полном сжигании 1 кг топлива. К. П. Д. котлов достигает величины порядка 0,60-0,85.

Самойлов К. И. Морской словарь. - М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941


Смотреть что такое "КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ КОТЛА" в других словарях:

    коэффициент полезного действия котла - 3.9 коэффициент полезного действия котла ηK: Отношение теплопроизводительности Q к теплопотреблению QB: Источник …

    коэффициент полезного действия - 3.1 коэффициент полезного действия: Величина, характеризующая совершенство процессов превращения, преобразования или передачи энергии, являющаяся отношением полезной энергии к подведенной. [ГОСТ Р 51387, приложение А] Источник … Словарь-справочник терминов нормативно-технической документации

    Отношение полезно затрачиваемой работы или получаемой энергии ко всей затраченной работе или соответственно потребляемой энергии. Напр., К. п. д. электродвигателя отношение механ. мощности, им отдаваемой, к подводимой к нему электр. мощности; К.… … Технический железнодорожный словарь

    Запрос «КПД» перенаправляется сюда; см. также другие значения. Коэффициент полезного действия (КПД) характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно… … Википедия

    коэффициент полезного действия h - 3.7 коэффициент полезного действия h , %: Отношение полезной выходной мощности к подводимой теплоте. Источник … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р 54442-2011: Котлы отопительные. Часть 3. Газовые котлы центрального отопления. Агрегат, состоящий из корпуса котла и горелки с принудительной подачей воздуха. Требования к теплотехническим испытаниям - Терминология ГОСТ Р 54442 2011: Котлы отопительные. Часть 3. Газовые котлы центрального отопления. Агрегат, состоящий из корпуса котла и горелки с принудительной подачей воздуха. Требования к теплотехническим испытаниям оригинал документа: 3.10… … Словарь-справочник терминов нормативно-технической документации

    - «Феликс Дзержинский» Паровоз ФД21 3125 Основные данные … Википедия

    Феликс Дзержинский … Википедия

    ГОСТ Р 54440-2011: Котлы отопительные. Часть 1. Отопительные котлы с горелками с принудительной подачей воздуха. Терминология, общие требования, испытания и маркировка - Терминология ГОСТ Р 54440 2011: Котлы отопительные. Часть 1. Отопительные котлы с горелками с принудительной подачей воздуха. Терминология, общие требования, испытания и маркировка оригинал документа: 3.11 аэродинамическое сопротивление газового… … Словарь-справочник терминов нормативно-технической документации

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

Отопительная техника, работающая на твердом топливе, представлена сегодня целой группой аппаратов. Каждый твердотопливный котел, выпускаемый сегодня отечественными и зарубежными компаниями-производителями – это совершенно новые, высокотехнологичные нагревательные приборы. Благодаря внедрению в конструкцию отопительных приборов технических новшеств и оснащения устройствами автоматического контроля, удалось значительно повысить КПД, оптимизировать работу твердотопливных котлов.

В нагревательных приборах этого вида используется традиционный принцип действия, аналогичный хорошо знакомому для нас варианту печного отопления. Основное действие обусловлено процессом генерации тепловой энергии выделяемой при сгорании в топке котла угля, кокса, дров и других топливных ресурсов с последующей передачей тепла теплоносителю.

Как и другие устройства, обеспечивающие выработку, передачу энергии, котельное оборудование имеет свой коэффициент полезного действия. Рассмотрим более детально, что собой представляет КПД агрегатов, работающих на твердом топливе. Постараемся найти ответы на вопросы, связанные с этими параметрами.

Что такое КПД отопительных приборов

Для любого нагревательного агрегата, в задачу которого входит обогрев внутреннего пространства жилых зданий и сооружений различного назначения, важным компонентом была, есть и остается эффективность работы. Параметром, определяющим эффективность твердотопливных котлов, является коэффициент полезного действия. КПД показывает отношение затраченной тепловой энергии, выдаваемой котлом в процессе горения твердого топлива к полезному теплу, которым снабжается вся система отопления.

Выражается это соотношение в процентах. Чем лучше работает котел, тем выше проценты. Среди современных твердотопливных котлов есть модели с высоким КПД, высокотехнологичные, эффективные и экономичные агрегаты.

Для справки: в качестве грубого примера, следует оценить тепловой эффект, получаемый при сидении возле костра. Выделяемая при горении дров тепловая энергия способна обогреть ограниченное вокруг костра пространство и предметы. Большая часть тепла от горящего костра (до 50-60%) уходит в атмосферу, ни давая никакой пользы, кроме эстетического содержания, в то время как соседние предметы и воздух получают ограниченное количество килокалорий. Коэффициент полезного действия у костра минимальный.

Коэффициент полезного действия отопительной техники сильно зависит от того, какой вид топлива используется и каковы конструктивные особенности устройства.

К примеру: при горении угля, дров или пеллет выделяется разного количество тепловой энергии. Во многом КПД зависит от технологии сжигания топлива в камере сгорания и типа системы отопления. Другими словами, каждый вид нагревательных приборов (традиционные котлы на твердом топливе, агрегаты длительного горения, пеллетные котлы и аппараты, работающие за счет пиролиза), обладает своими технологическими особенностями конструкции, влияющие на параметры КПД.

Отражаются на эффективности котлов так же условия эксплуатации и качество вентиляции. Слабая вентиляция становится причиной нехватки воздуха, необходимого для высокой интенсивности процесса сжигания топливной массы. От состояния дымохода зависит не только уровень комфорта во внутренних помещениях, но и КПД обогревательной техники, работоспособность всей системы отопления.

Сопроводительная документация на отопительный котел должна иметь заявленный производителем КПД оборудования. Соответствие реальных показателей заявленной информации достигается за счет правильного монтажа аппарата, обвязкой и последующей эксплуатацией.

Правила эксплуатации котельных устройств, соблюдение которых оказывает влияние на величину КПД

Любой вид отопительного агрегата имеет свои параметры оптимальной нагрузки, которая должна быть максимально полезной, с технологической и экономической точки зрения. Процесс эксплуатации твердотопливных котлов построен таким образом, что большую часть времени техника работает в оптимальном режиме. Обеспечить такую работу позволяет соблюдение правил эксплуатации отопительного оборудования, работающего на твердом топливе. В данном случае необходимо придерживаться и следовать следующим пунктам:

  • необходимо соблюдать приемлемые режимы дутья и работы вытяжки;
  • постоянный контроль над интенсивностью горения и полноты сгорания топлива;
  • контролировать величину уноса и провала;
  • оценка состояния нагреваемых в процессе горения топлива поверхностей;
  • регулярная чистка котла.

Перечисленные пункты являются тем необходимым минимумом, которого нужно придерживаться во время эксплуатации котельного оборудования в отопительный сезон. Соблюдение простых и понятных правил позволит получить заявленный в характеристиках КПД автономного котла, .

Можно сказать о том, что каждая мелочь, каждый элемент конструкции нагревательного прибора сказывается на величине коэффициента полезного действия. Правильно сконструированный дымоход, система вентиляции обеспечивают оптимальный приток воздуха в топочную камеру, что существенно отражается на качестве горения топливного продукта. Работа вентиляции оценивается величиной коэффициента избытка воздуха. Чрезмерное увеличение объема поступающего воздуха приводит к перерасходу топлива. Тепло интенсивнее уходит через трубу вместе с продуктами горения. При уменьшении коэффициента работа котлов существенно ухудшается, высока вероятность возникновения в топке зон, ограниченных кислородом. При такой ситуации в топке начинает образовываться и скапливаться в больших количествах сажа.

Интенсивность и качество горения в твердотопливных котлах требуют постоянного контроля. Загрузка топочной камеры должна выполняться равномерно, не допуская очаговых возгораний.

На заметку: уголь или дрова равномерно распределяются по колосникам или по решетке. Горение должно проходить по всей поверхности слоя. Равномерно распределенное топливо быстро подсыхает и горит по всей поверхности, гарантируя полное выгорание твердых компонентов топливной массы до летучих продуктов горения. Если вы правильно заложили топливо в топку, пламя пи работе котлов будет ярко желтого, соломенного цвета.

Во время горения важно не допускать провалов топливного ресурса, иначе придется столкнуться с существенным механическими потерями (недожог) топлива. Если не контролировать положения топлива в топке, упавшие в зольный ящик крупные фрагменты угля или дров могут привести к несанкционированному возгоранию остатков продуктов топливной массы.

Сажа и смола, скопившаяся на поверхности теплообменника, уменьшают степень нагрева теплообменника. В результате всех перечисленных нарушений условий эксплуатации уменьшается полезный объем тепловой энергии, необходимой для нормальной работы системы отопления. Как следствие, можно говорить о резком снижении КПД отопительных котлов.

Факторы, от которых зависит КПД котлов

Котлы с высоким значением КПД на сегодняшний день представлены следующей отопительной техникой:

  • агрегаты, работающие на угле и на другом твердом ископаемом топливе;
  • пеллетные котлы;
  • аппараты пиролизного типа.

КПД нагревательных приборов, в топку которых идет антрацит, каменный уголь и торфяные брикеты, составляет в среднем 70-80%. Значительно больший коэффициент полезного действия у пеллетных устройств – до 85%. Загружаемые гранулами, нагревательные котлы этого типа отличаются высокой эффективностью, выдаваемые во время горения топлива огромное количество тепловой энергии.

На заметку: одной загрузки вполне достаточно для работы аппарата на оптимальных режимах до 12-14 часов.

Абсолютный лидер среди твердотопливного отопительного оборудования – пиролизный котел. В этих приборах используется дрова или отходы древесины. КПД такой техники сегодня составляет 85% и более. Агрегаты так же относятся к высокоэффективным устройствам длительного горения, но при соблюдении необходимого условия — влажность топлива не должна превышать 20%.

Немаловажным для значения коэффициента полезного действия является тип материала, из которого изготовлен отопительный прибор. Сегодня на рынке представлены модели твердотопливных котлов, выполненных из стали и из чугуна.

Для справки: К первым относятся стальные изделия. Для снижения рыночной стоимости агрегата, компании – производители используют основные элементы конструкции, выполненные из стали. Например, теплообменник изготавливается из высокопрочной жароустойчивой черной стали толщиной 2-5 мм. Таким же образом изготавливаются нагревательные трубчатые элементы, используемые для нагрева основного контура.

Чем толще сталь, используемая в конструкции, тем выше теплообменные характеристики оборудования. Соответственно растет коэффициент полезного действия.

В аппаратах из стали увеличение КПД достигается за счет установки специальных внутренних перегородок в виде труб – ступеней основного потока и рассекателей дыма. Меры вынужденные и частичные, позволяющие незначительно повысить эффективность основного устройства. Среди моделей стальных твердотопливных котлов редко можно встретить приборы, имеющие КПД выше 75%. Сроки эксплуатации таких изделий составляют 10-15 лет.

Зарубежные компании с целью повышения КПД стальных отопительных котлов используют в своих моделях процесс нижнего сжигания, с 2-мя или с 3-мя тяговыми потоками. В конструкции изделий предусмотрена установка трубчатых нагревательных элементов для улучшения теплообмена. Подобная техника имеет КПД в пределах 75-80%, и прослужить может дольше, в 1,5 раза.

В отличие от стальных агрегатов, большей эффективностью обладают чугунные твердотопливные аппараты.


В конструкции чугунных агрегатов используются теплообменники, изготовленные из чугунного сплава особой марки, обладающего высокой теплоотдачей. Такие котлы чаще всего используются для открытых отопительных систем отопления. Изделия дополнительно оснащаются колосниками, благодаря которым осуществляется интенсивный отбор тепловой энергии непосредственно от горящего топлива, размещенного на колосниках.

КПД у таких нагревательных приборов составляет 80%. Следует учитывать огромные по времени сроки эксплуатации чугунных котлов. Срок работоспособности у подобной техники составляет 30-40 лет.

Как повысит эффективность отопительной техники, работающей на твердом топливе

Сегодня многие потребители, имея в своем распоряжении твердотопливный котел, стараются найти наиболее удобный и практичный способ как повысить КПД отопительного оборудования. Технологичные параметры нагревательных приборов, заложенные производителем, со временем теряют свои номинальные значения, поэтому для повышения эффективности котельного техники изыскиваются различные способы и средства.

Рассмотрим один из наиболее эффектных вариантов, установка дополнительного теплообменника. В задачу новой оснастки входит снятие тепловой энергии с летучих продуктов горения.

На видео можно увидеть, как сделать самостоятельно экономайзер (теплообменник)

Для этого нам предварительно необходимо узнать какова температура дыма на выходе. Изменить ее можно при помощи мультиметра, который помещается непосредственно в середину дымохода. Данные о том, сколько можно получить дополнительного тепла от улетучивающихся продуктов горения необходимы для расчета площади дополнительного теплообменника. Делаем следующие действия:

  • отправляем в топку дрова определенного количества;
  • засекаем за сколько времени прогорит определенное количество дров.

К примеру: дрова, в количестве 14.2 кг. горят 3,5 часа. Температура дыма на выходе из котла составляет 460 0 С.

За 1 час у нас сгорело: 14,2/3,5 = 4,05 кг. дров.

Для расчета количества дыма используем общепринятое значение — 1 кг. дров = 5,7 кг. дымовых газов. Далее умножаем количество сгоревших за один час дров на количество дыма, получаемое при сгорании 1 кг. дров. В итоге: 4,05 х 5,7 = 23,08 кг. летучих продуктов горения. Эта цифра и станет отправной точкой для последующих расчетов количества тепловой энергии, которую можно использовать дополнительно для нагрева второго теплообменника.

Зная значение теплоемкости летучих горячих газов, как 1,1 кДж/кг., делаем дальнейший расчет мощности теплового потока, если мы хотим снизить температуру дыма с 460 0 С до 160 градусов.

Q = 23,08 х 1,1 (460-160) = 8124 кДж тепловой энергии.

В итоге получаем точное значение дополнительной мощности, которую обеспечивают летучие продукты горения: q = 8124/3600 = 2,25 кВт, цифра большая, которая может оказать существенное влияние на повышение эффективности отопительного оборудования. Зная о том, сколько энергии уходит впустую, желание оснастить котел дополнительным теплообменником вполне оправдано. За счет притока дополнительной тепловой энергии для работы по нагреву теплоносителя, повышается не только эффективность всей системы отопления, но и сам КПД отопительного агрегата растет.

Выводы

Несмотря на обилие моделей современной отопительной техники, твердотопливные котлы продолжают оставаться одним из эффективных и доступных видом нагревательного оборудования. В сравнении с электрическими котлами, которые имеют КПД до 90%, агрегаты на твердом топливе обладают высоким экономическим эффектом. Увеличение коэффициента полезного действия на новых моделях, позволило этому виду котельного оборудования вплотную приблизиться к электрическим и газовым котлам.

Современные аппараты на твердом топливе способны не только работать длительное время, используя доступное по цене природные топливные ресурсы, но и обладают высокими эксплуатационными характеристиками.